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Scaling laws for the equation of state of flexible and linear tangent hard sphere chains
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The influence that molecular flexibility has on the phase diagram and equation of state of hard sphere chains
is examined. In the isotropic phase the equation of state is insensitive to flexibility; rigid chains display the
same equation of state as flexible chains. However, with the onset of liquid crystalline phases for rigid
molecules this similarity disappears. Differences are also apparent between the rigid and flexible models in the
solid phase. Wertheim’s thermodynamic perturbation theory has been extended to describe the solid phase of
fully flexible chains and excellent agreement with simulation results is seen. A scaling is proposed that, when
applied to the fully flexible model, reproduces simulation results for a linear rigid model. It is shown that for
the fully flexible model the compressibility factor for the fluid and solid phases scale with the number of
monomersm. The compressibility factor for the linear model scales withm in the isotropic fluid, and becomes
independent ofm in the nematic, smectic, and solid phases.
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In the 1980s Wertheim developed a theory, known as
first-order thermodynamic perturbation theory~TPT1! @1–4#,
to describe the equation of state~EOS! of associating fluids.
It was soon realized@5–8# that if the association forces be
came infinitely strong then chains would form. The TP
EOS for a fluid of monodisperse hard sphere chains built
from m tangent hard spheres of diameters can be written as

Z~y!5
p

rkT
5mZre f~y!2~m21!S 11y

] ln gre f~s,y!

]y D ,

~1!

whereZ is the compressibility factor,r is the number density
of chains,p is the pressure, andy5(rp/6)ms3 is the pack-
ing fraction.Zre f is the EOS of the reference monomer sy
tem ~i.e., hard spheres! andgre f(s,y) is the contact value o
the pair correlation function for this system. Equation~1! can
be rewritten in the form

Z~y!5Z1~y!1mZ2~y!, ~2!

whereZ1 andZ2 are functions that only depend on the pac
ing fraction.

Two interesting observations can be gleaned from Eqs~1!
and~2!. First, that the compressibility factor is a linear fun
tion of the degree of polymerization of the chainm. Simula-
tion results are consistent with this prediction@9#. Second,
that according to TPT1 the presence or absence of flexib
in the chain does not affect its EOS. In this work, we sh
consider two different models; a linear tangent hard sph
~LTHS! chain and the so called pearl-necklace~PN! chain.
The LTHS model is composed ofm tangent hard spheres in
rigid linear configuration. The PN is also composed of ta
gent hard spheres, however, the monomers are able to a
any configuration that is free of intermolecular and intram
lecular overlap. Computer simulation results for short cha
support the prediction that in the fluid phase the LTHS a
the PN models have the same EOS@10#. If one defines a
reduced pressure asp* 5ps3/kT, then from Eq.~2! we have
1063-651X/2002/65~5!/052501~4!/$20.00 65 0525
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p1~y!

m
1p2~y!. ~3!

Thus, for a given packing fraction the reduced pressure
comes independent ofm for sufficiently long chains.

In this paper, we wish to address two simple yet intere
ing questions. The first is, are the similarities between
EOS of the LTHS and the PN models in the isotropic flu
phase also seen for the solid phase? We shall see that th
not the case. Second, can Wertheim’s TPT1 be adapted to
solid phase? We will show that such an extension is possi
Let us focus on the first question. In Figs. 1 and 2, equati
of state obtained by computer simulation are presented

FIG. 1. Equation of state for flexible and rigid tangent ha
sphere models withm54. 3 and1 are simulation points for the
PN model from Malanoski and Monson@13# in the isotropic fluid
and solid phases, respectively.h andd are MC simulation results
for the LTHS model from Vegaet al. @12# for the isotropic and solid
phases, respectively. The dotted line is TPT1 for the isotropic flu
The solid line is TPT1 for the disordered solid and the dashed
is the aforementioned theory with the application of the scal
given by Eq.~5!. y is the packing fraction,p* 5ps3/kT.
©2002 The American Physical Society01-1
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both the PN model and the LTHS model withm54 ~Fig. 1!
andm57 ~Fig. 2!. For bothm54 and 7 it can be seen tha
in the isotropic fluid, in accordance with TPT1, there is ve
little difference between the EOS of the flexible PN mod
and that of the rigid LTHS models. However, at higher pa
ing fractions dramatic differences are observed; first with
onset of liquid crystalline phases for the LTHSm57 model
~nematic and smecticA) @11,12# and, at even higher packin
fractions, between the solid phases of the two mod
@12,13#. The structure of the solid phases of the LTHS a
PN models has been described in detail in Refs.@12# and
@13#, respectively. In both cases the structure is based on
face centered cubic~fcc! structure of hard spheres. The di
ference between the structures lies in the topology of
bonds; in the PN model there is no long range orientat
order between the bond vectors of the chain@14–16#,
whereas in the LTHS solid bonds are orientationally order
It would be highly desirable to have an implementation
Wertheim’s theory for the solid phase. It is clear from t
previous results that such an implementation should take
account the fact that PN and LTHS present different EOS
the solid phase. Let us start with the solid phase of the
model. In the solid phase of the PN model the molecu
bonds are located randomly, thus forming an isotropic dis
bution of bonds within a fcc structure of hard spheres. Si
larly, there is an isotropic distribution of bonds in the isotr
pic fluid phases of both the PN and the LTHS models
starting point for such a theory is to apply Eq.~1! to the solid
phase. Notice that the only input required in Eq.~1! is the
equation of state of the hard sphere monomer in the s
phase. Such an EOS is provided by Hall@17#. The contact
valuegre f(s,y) required by the theory can be obtained fro
the virial theorem,Zre f5114ygre f(s,y). The original idea
for such an extension was given by Sear and Jackson@18# for

FIG. 2. Equation of state for flexible and rigid tangent ha
sphere models withm57. 3 and1 are simulation points for the
PN model from Malanoski and Monson@13# in the isotropic fluid
and solid phases, respectively. Monte Carlo simulation results
the LTHS model@11,12# are given byd isotropic,( nematic,j
smectic, andh solid state points. The dotted line is TPT1 for th
isotropic fluid. Solid line is TPT1 for the disordered solid and t
dashed line is the aforementioned theory with the application of
scaling given by Eq.~5!. y is the packing fraction,p* 5ps3/kT.
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m52. In Figs. 1 and 2 simulation results of Malanoski a
Monson@13# for the PN model withm54 and 7 are com-
pared with the solid phase extension for TPT1. As can
seen the agreement between theory and simulation is ex
lent. The TPT1 solid phase extension has been show
work well for other systems and properties, such as tw
dimensional chains, Lennard-Jones chains, and for free e
gies @16,19,20#. It is worth mentioning that the expression
for TPT1 in the solid phase are also of the form given
Eqs.~2! and~3!, although the precise expressions forZ1 , p1 ,
Z2, andp2 differ from those of the fluid phase. Is it possib
to derive a Wertheim-like theory for the solid phase of t
LTHS? It is clear from the isotropic results that TPT1 do
not take into account intramolecular flexibility. Since th
solid phase EOS of the PN and the LTHS models differ, a
that TPT1 reproduces the PN EOS, then we do not exp
TPT1 to be successful in describing the LTHS solid pha
Given that the distribution of bonds in the LTHS solid
anisotropic then one may suspect that such an impleme
tion would require knowledge of the three- or four-body d
tribution functions for the hard sphere monomer solid~i.e.,
Wertheim’s theory should be extended to the second or t
order for the solid phase! thereby allowing differences be
tween flexible and rigid chains to appear naturally. Sin
little is known about the three- or four-body correlation fun
tions for the hard sphere monomer solid then such an ex
sion is not possible at the moment. However, we shall sh
that a simple scaling argument is successful in describing
simulation results for the LTHS in the solid phase. The qu
ity of the result is so good that it strongly suggests that s
an extension of Wertheim’s theory for the LTHS solid m
indeed be possible. The approach we shall use is to relate
reduced pressurep* of the LTHS model to that of the PN
model at the same packing fractiony by the scaling

pLTHS* ~m,y!5S f LTHS

f PN
D pPN* ~m,y!, ~4!

wherepLTHS* is the reduced pressure of the LTHS in the so
phase andpPN* is the reduced pressure of the pearl-neckla
model in the solid phase.pPN* is provided by the solid phas
PN extension to TPT1 described previously. The numbe
degrees of freedom of the LTHS molecule,f LTHS, is equal to
5, and the number of degrees of freedom of the PN mo
f PN, is obtained by adding the three degrees of freedom
an arbitrary atom in the model and the two degrees of fr
dom for each of the bonds~note that in this model the bon
length is fixed!. This results in the formula

pLTHS* ~m,y!5S 5

312~m21! D pPN* ~m,y!. ~5!

Cell theory@21# can be used to provide a heuristic argume
as to why Eq.~5! holds. In cell theory, a theory successful
describing solid phases~although not quite so for liquids!
@21#, the configurational free energy can be expressed a

A

NkT
52 ln~v !52 lnF E expS 2U~1!

kT Ddq1G , ~6!

or

e

1-2



s
io

u
om
a

he
Eq
e
r

e-
H
he
e
e

n

om

o
n
ib
In
e
f
-
re
-
re

the
pic
d-
are

to

ro-
for

lso
ro-

e I.

n

lly

se

ve
by

BRIEF REPORTS PHYSICAL REVIEW E 65 052501
where v is the free volume,q1 describes the coordinate
required to define the location, orientation, and configurat
of an arbitrary molecule labeled as 1, andU(1) is the energy
of molecule 1 with respect to all other molecules in an eq
librium lattice. It is assumed that each degree of freed
contributes equally to the free volume. Thus, it follows th
v5(C) f , wheref is the number of degrees of freedom of t
molecule. By substituting the previous expression into
~6! one is led to Eq.~5!. In Figs. 1 and 2, it is shown that th
scaling of Eq.~5! yields a good description of the EOS fo
the LTHS solid for m54 and 7. In Fig. 3, Monte Carlo
simulation results form53,4,5,6~Ref. @12#! and form515
~this work! are compared with the predictions from Eq.~5!.
Again the agreement is seen to be excellent fromm53 to
15. Form52 the prefactor of Eq.~5! is one, thus the LTHS
and PN models have the same EOS for the dimer~the LTHS
and PN models being identical models form52). It is worth
noting that the only input information in the theoretical d
scription of the EOS of the solid phases of the PN and LT
models is the 30 year old solid phase monomer hard sp
EOS of Hall@17#. Let us now discuss the scaling laws for th
EOS for the PN and LTHS models in the solid phase. Giv
that the PN solid can be described by TPT1 then Eqs.~2! and
~3! also hold in the solid phase. Thus in both the solid a
the fluid phases of the PN modelZ scales asm, and p* as
m0. For the LTHS model in the solid phase we can see fr
Eq. ~5! that, for sufficiently large values ofm, p* scales as
m21 andZ scales asm0. Scalings for the PN and the LTHS
models are summarized in Table I for various phases for b
the compressibility factor and the reduced pressure. It ca
seen that the scaling is the same for both rigid and flex
molecules in the isotropic fluid, and differs in the solid.
the solid phase, orientational order precipitates this chang
scaling. In order to see whether the solid phase scaling
the LTHS model also holds for the nematic and smecticA
phases, a plot is made of the compressibility factor with
spect to the packing fraction~Fig. 4!. For the nematic, smec
tic, and solid phase Monte Carlo simulation results are p

FIG. 3. Plot of the EOS for the LTHS model in the solid pha
for, from top to bottom,m53, 4, 5, 6, and 15.d represents MC
simulation points from this work (m515), and data from Ref.@12#.
The solid curve is the EOS obtained from Eq.~5! using TPT1 for
the PN solid.p* 5p/(kT)s3.
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sented and curves for Wertheim’s TPT1 represent
isotropic fluid. It can be seen that although in the isotro
phase the EOS is significantly different for each of the mo
els, the results for the nematic, smectic, and solid phases
independent ofm. Although not included in Table I, notice
that at very low densities the compressibility factor goes
one; Z scales asm0 for the PN and LTHS models in this
region. At low densities the scaling ofZ21 is given by the
scaling of the second virial coefficient of the models~see
discussions in Refs.@22# and @23#!.

Given the remarkable performance of the scaling p
posed here it is tempting to suggest that a similar scaling,
example pLTHS,2D* /pPN,2D* 53/@21(m21)#, may hold for
two-dimensional hard chains in the solid phase@19#. We be-
lieve that the scaling proposed here for LTHS also holds a
for other rigid linear hard bodies, for example hard sphe
cylinders@24–26#. All that is required is to replacem by g
5(L/D11), whereL is the length andD is the diameter of
the spherocylinder, in the scaling laws presented in Tabl
Also notice that since the scaling ofZ for the LTHS model is
the same in the nematic, smectic-A, and solid phases, the
the packing fraction at which the nematic–smectic-A and the
smectic-A–solid phase transitions occur should be virtua

TABLE I. Scaling laws for the compressibility factorZ, and the
reduced pressurep* .

Isotropic fluid Nematic Smectic Solid
Z p* Z p* Z p* Z p*

PN m m0 m m0

LTHS m m0 m0 m21 m0 m21 m0 m21

FIG. 4. Plot of the EOS for the LTHS model withm56, 7, and
15. The dashed line is the TPT1 curve form56, the dotted line is
the TPT1 curve form57, and the dot-dashed line is the TPT1 cur
for m515. m56 solid phase simulation points are represented
j, m57 solid phase byd, and m515 solid phase bym. h

represents MC data points form56 in the smectic phase,s rep-
resents MC data points form57 in the smectic phase,n represents
MC data points form515 in the smectic phase,1 represents MC
data points form56 in the nematic phase,3 represents MC data
points form57 in the nematic phase~from Ref. @11#!, and * rep-
resents MC data points form515 in the nematic phase.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 052501
independent of the length of the chainm. Simulation results
for hard spherocylinders are consistent with this sugges
@24#. SinceZ scales withm for the LTHS chain in the iso-
tropic phase and asm0 in the nematic phase then one expe
to see a shift in the location of the isotropic-nematic tran
tion to lower densities asm increases. Similarly, the scalin
of the reduced second virial coefficient of the LTHS mod
B2* 5B2 /Vm , whereVm is the molecular volume, goes asm
in the isotropic phase and asm0 in the nematic phase. Thes
scalings have been well known since the work of Onsa
05250
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,

r

@27#. Here we have shown that for the LTHS modelZ scales
asm0 not only in the nematic phase but also in the smec
and solid phases.
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