PHYSICAL REVIEW E, VOLUME 65, 052501
Scaling laws for the equation of state of flexible and linear tangent hard sphere chains
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The influence that molecular flexibility has on the phase diagram and equation of state of hard sphere chains
is examined. In the isotropic phase the equation of state is insensitive to flexibility; rigid chains display the
same equation of state as flexible chains. However, with the onset of liquid crystalline phases for rigid
molecules this similarity disappears. Differences are also apparent between the rigid and flexible models in the
solid phase. Wertheim’s thermodynamic perturbation theory has been extended to describe the solid phase of
fully flexible chains and excellent agreement with simulation results is seen. A scaling is proposed that, when
applied to the fully flexible model, reproduces simulation results for a linear rigid model. It is shown that for
the fully flexible model the compressibility factor for the fluid and solid phases scale with the number of
monomeram. The compressibility factor for the linear model scales witin the isotropic fluid, and becomes
independent ofm in the nematic, smectic, and solid phases.
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In the 1980s Wertheim developed a theory, known as the p1(Y)
first-order thermodynamic perturbation thediPT1) [1—4], *=
to describe the equation of stateOS of associating fluids.
It was soon realize@5—8] that if the association forces be-
came infinitely strong then chains would form. The TPT1Thus, for a given packing fraction the reduced pressure be-
EOS for a fluid of monodisperse hard sphere chains built ugomes independent o for sufficiently long chains.
from m tangent hard spheres of diametecan be written as In this paper, we wish to address two simple yet interest-

ing questions. The first is, are the similarities between the
alng'(a,y) EOS of the LTHS and the PN models in the isotropic fluid
T , phase also seen for the solid phase? We shall see that this is
1) not the case. Second, can Wertheim’s TPT1 be adapted to the
solid phase? We will show that such an extension is possible.
whereZ is the compressibility factop is the number density Let us focus on the first question. In Figs. 1 and 2, equations
of chains,p is the pressure, ang=(p/6)mo= is the pack- of state obtained by computer simulation are presented for
ing fraction.Z"' is the EQS of the reference monomer sys-
tem (i.e., hard sphereésndg'®f(o,y) is the contact value of
the pair correlation function for this system. Equati@hcan
be rewritten in the form

= PaY). ®

_L_ ref _ _
2(y)= g =mZ*(y) = (m=1) 1+y
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Z(y)=Z1(y)+mZy(y), 2

80
whereZ; andZ, are functions that only depend on the pack- =

ing fraction. oo |
Two interesting observations can be gleaned from Egs.

and(2). First, that the compressibility factor is a linear func- 40 f

tion of the degree of polymerization of the cham Simula-

tion results are consistent with this predictif®]. Second, 2r
that according to TPT1 the presence or absence of flexibility
in the chain does not affect its EOS. In this work, we shall
consider two different models; a linear tangent hard sphere
(LTHS) chain and_ the so called pearl-neckla@) chaln. FIG. 1. Equation of state for flexible and rigid tangent hard
The L,THS mode_l IS cc_)mposed Mtqngent hard spheres in a sphere models witm=4. X and + are simulation points for the
rigid linear configuration. The PN is also composed of tan-py model from Malanoski and Monsd3] in the isotropic fluid
gent hard spheres, however, the monomers are able to adogfy solid phases, respectively. and® are MC simulation results
any configuration that is free of intermolecular and intramo-for the LTHS model from Vegat al.[12] for the isotropic and solid
lecular overlap. Computer simulation results for short chainghases, respectively. The dotted line is TPT1 for the isotropic fluid.
support the prediction that in the fluid phase the LTHS andrhe solid line is TPT1 for the disordered solid and the dashed line
the PN models have the same EQN)]. If one defines a is the aforementioned theory with the application of the scaling
reduced pressure @& = po/kT, then from Eq(2) we have  given by Eq.(5). y is the packing fractionp* = pa®/kT.
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= : : : - - m=2. In Figs. 1 and 2 simulation results of Malanoski and
Monson[13] for the PN model withm=4 and 7 are com-
pared with the solid phase extension for TPT1. As can be
seen the agreement between theory and simulation is excel-
i lent. The TPT1 solid phase extension has been shown to
5 A work well for other systems and properties, such as two-
/ dimensional chains, Lennard-Jones chains, and for free ener-
/ gies[16,19,2Q. It is worth mentioning that the expressions
X /] for TPT1 in the solid phase are also of the form given by
/ Egs.(2) and(3), although the precise expressionsZqr, p4,
Z,, andp, differ from those of the fluid phase. Is it possible
to derive a Wertheim-like theory for the solid phase of the
LTHS? It is clear from the isotropic results that TPT1 does
07 not take into account intramolecular flexibility. Since the
solid phase EOS of the PN and the LTHS models differ, and
FIG. 2. Equation of state for flexible and rigid tangent hard that TPT1 reproduces the PN EOS, then we do not expect
sphere models witm=7. X and+ are simulation points for the 111 t0 be successful in describing the LTHS solid phase.
PN model from Malanoski and Monsdi3] in the isotropic fluid ~ Given that the distribution of bonds in the LTHS solid is
and solid phases, respectively. Monte Carlo simulation results foRNisotropic then one may suspect that such an implementa-
the LTHS model[11,17 are given by® isotropic, ® nematic,l tion would require knowledge of the three- or four-body dis-
smectic, and solid state points. The dotted line is TPT1 for the tribution functions for the hard sphere monomer sdlid.,
isotropic fluid. Solid line is TPT1 for the disordered solid and the Wertheim’s theory should be extended to the second or third
dashed line is the aforementioned theory with the application of the@rder for the solid phagethereby allowing differences be-
scaling given by Eq(5). y is the packing fractionp* = po®/kT. tween flexible and rigid chains to appear naturally. Since
little is known about the three- or four-body correlation func-
both the PN model and the LTHS model with=4 (Fig. 1) tions for the hard sphere monomer solid then such an exten-
andm=7 (Fig. 2). For bothm=4 and 7 it can be seen that sion is not possible at the moment. However, we shall show
in the isotropic fluid, in accordance with TPT1, there is verythat a simple scaling argument is successful in describing the
little difference between the EOS of the flexible PN modelSimulation results for the LTHS in the solid phase. The qual-
and that of the rigid LTHS models. However, at higher pack-ity of the result is so good that it strongly suggests that such
ing fractions dramatic differences are observed; first with thétn extension of Wertheim’s theory for the LTHS solid may
onset of liquid crystalline phases for the LTHS=7 model indeed be possible. The approach we shall use is to relate the
(nematic and smecti8) [11,12] and, at even higher packing reduced pressurg* of th_e LTHS_modeI to tha_t of the PN
fractions, between the solid phases of the two modelgnodel at the same packing fractigrby the scaling
[12,13. The structure of the solid phases of the LTHS and f
PN models has been described in detail in REf®] and * — '-THS) *
[13], respectively. In both cases the structure is based on the Plrus(m.Y) ( fon Pen(m.Y). @
face centered cubi@fcc) structure of hard spheres. The dif- . ) )
ference between the structures lies in the topology of th&/Nerepirys is the reduced pressure of the LTHS in the solid
bonds; in the PN model there is no long range orientatiorPhase anggy is the reduced pressure of the pearl-necklace
order between the bond vectors of the chait—16, model in the solid phas@g, is provided by the solid phase
whereas in the LTHS solid bonds are orientationally orderedPN extension to TPT1 described previously. The number of
It would be highly desirable to have an implementation ofdegrees of freedom of the LTHS moleculgyys, is equal to
Wertheim's theory for the solid phase. It is clear from the5, and the number of degrees of freedom of the PN model,
previous results that such an implementation should take intbpy, is obtained by adding the three degrees of freedom of
account the fact that PN and LTHS present different EOS iran arbitrary atom in the model and the two degrees of free-
the solid phase. Let us start with the solid phase of the PNlom for each of the bondsiote that in this model the bond
model. In the solid phase of the PN model the moleculatength is fixed. This results in the formula
bonds are located randomly, thus forming an isotropic distri-
bution of bonds within a fcc structure of hard spheres. Simi-
larly, there is an isotropic distribution of bonds in the isotro-
pic fluid phases of both the PN and the LTHS models. A
starting point for such a theory is to apply Ef) to the solid  Cell theory[21] can be used to provide a heuristic argument
phase. Notice that the only input required in Ef) is the  as to why Eq(5) holds. In cell theory, a theory successful in
equation of state of the hard sphere monomer in the solidescribing solid phase&lthough not quite so for liquids
phase. Such an EOS is provided by HdlF]. The contact [21], the configurational free energy can be expressed as

valueg'®f(o,y) required by the theory can be obtained from u(L)
f eX[{ kT ) dql} ) (6)

PirHs(M,y) =

5
3+2(m_1))pPN(mvy)- (5)

the virial theoremZ"®'=1+4yg"(o,y). The original idea A () =—1In
for such an extension was given by Sear and Jacks®lrfor NkT
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TABLE I. Scaling laws for the compressibility fact@; and the

reduced pressurg*.
120 |

Isotropic fluid Nematic Smectic Solid

wr z p* Z p* Z p* YA p*
LT PN m nf m nf
a LTHS m m m® m?! m® m! mt m?

60

“r sented and curves for Wertheim's TPT1 represent the

isotropic fluid. It can be seen that although in the isotropic
phase the EOS is significantly different for each of the mod-
: ¢ , , els, the results for the nematic, smectic, and solid phases are
064 : : y : : independent om. Although not included in Table I, notice
that at very low densities the compressibility factor goes to
FIG. 3. Plot of the EOS for the LTHS model in the solid phase one; Z scales asn® for the PN and LTHS models in this
for, from top to bottomm=3, 4,5, 6, and 15@ represents MC  region. At low densities the scaling &—1 is given by the
simulation points from this workri=15), and data from Ref12].  scaling of the second virial coefficient of the modé&ee
The solid curve is the EOS obtained from E6) using TPT1 for  discussions in Ref§22] and[23]).
the PN solid.p* = p/(kT)o®. Given the remarkable performance of the scaling pro-
posed here it is tempting to suggest that a similar scaling, for
wherev is the free volumegq; describes the coordinates example Pirus 20/ Pon 2= 32+ (m—1)], may hold for
required to define the location, orientation, and configurationyo-dimensional hard chains in the solid ph&&8]. We be-
of an arbitrary molecule labeled as 1, dudl) is the energy jieve that the scaling proposed here for LTHS also holds also
of molecule 1 with respect to all other molecules in an equifor other rigid linear hard bodies, for example hard sphero-
librium lattice. It is assumed that each degree of freedomylinders[24—26. All that is required is to replace by y
contributes equally to the free volume. Thus, it follows that— (| /p + 1), whereL is the length and is the diameter of
v=(C)', wheref is the number of degrees of freedom of the the spherocylinder, in the scaling laws presented in Table I.
molecule. By substituting the previous expression into Eqa|so notice that since the scaling &ffor the LTHS model is
(6) one is led to Eq(5). In Figs. 1 and 2, itis shown that the the same in the nematic, smecfic-and solid phases, then
scaling of Eq.(5) yields a good description of the EOS for the packing fraction at which the nematic—smedtiand the

the LTHS solid form=4 and 7. In Fig. 3, Monte Carlo gmecticA—solid phase transitions occur should be virtually
simulation results fom=3,4,5,6(Ref.[12]) and form=15

(this work) are compared with the predictions from E§). 70 : : - : : : -
Again the agreement is seen to be excellent filom 3 to
15. Form=2 the prefactor of Eq(5) is one, thus the LTHS eor .
and PN models have the same EOS for the dittter LTHS
and PN models being identical models for=2). It is worth I -
noting that the only input information in the theoretical de- wl .
scription of the EOS of the solid phases of the PN and LTHS :
models is the 30 year old solid phase monomer hard sphere | ) ',‘
EOS of Hall[17]. Let us now discuss the scaling laws for the

EOS for the PN and LTHS models in the solid phase. Given x| '
that the PN solid can be described by TPT1 then Egysand
(3) also hold in the solid phase. Thus in both the solid and 1w}
the fluid phases of the PN modglscales asn, andp* as
mC. For the LTHS model in the solid phase we can see from ¢~ ‘
Eq.l(5) that, for sufficigzntly large values ah, p* scales as
m  andZ scales asn’. Scalings for the PN and the LTHS = 1, pyot of the EOS for the LTHS model with=6, 7, and
models are summarized in Table | for various phases for botkl15 The dashed line is the TPT1 curve for6. the dotted fine is
the compressibility_ fac_tor and the reduced pressure. It can 'ﬂé TPT1 curve fom=7, and the dot-dashed Ii’ne is the TPT1 curve
seen that the sca_llng IS _the same for _bOth r_|g|d and f_lex'bl%r m=15. m=6 solid phase simulation points are represented by
molecules in the isotropic fluid, and differs in the solid. In B, m=7 solid phase by®, and m=15 solid phase byA. [J

the solid phase, orientational order precipitates this change ipresents MC data points far=6 in the smectic phas€) rep-
scaling. In order to see whether the solid phase scaling fofesents MC data points fan=7 in the smectic phasé, represents
the LTHS model also holds for the nematic and smeatic- MC data points form=15 in the smectic phase; represents MC
phases, a plot is made of the compressibility factor with redata points form=6 in the nematic phases represents MC data
spect to the packing fractioffrig. 4). For the nematic, smec- points form=7 in the nematic phasérom Ref.[11]), and * rep-

tic, and solid phase Monte Carlo simulation results are preresents MC data points fan=15 in the nematic phase.

'
0.6 0.7
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independent of the length of the chaim Simulation results [27]. Here we have shown that for the LTHS modescales
for hard spherocylinders are consistent with this suggestioasm® not only in the nematic phase but also in the smectic
[24]. SinceZ scales withm for the LTHS chain in the iso- and solid phases.

tropic phase and as® in the nematic phase then one expects

to see a shift in the location of the isotropic-nematic transi- Financial support is due to Project No. BFM2001-01420-
tion to lower densities am increases. Similarly, the scaling C02-01 of the Spanish DGICYDireccion General de In-

of the reduced second virial coefficient of the LTHS model,vestigacim Cientfica y Tecnicg. One of the authors C.M.
B3 =B,/V,, whereV,, is the molecular volume, goes as  would like to acknowledge and thank the European Union
in the isotropic phase and a® in the nematic phase. These FP5 Program for financial support through Contract No.
scalings have been well known since the work of OnsageHPMF-CT-1999-00163.
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