The second virial coefficient of the dipolar two center Lennard-Jones
modely

Carlos Vega, Carl McBride and Carlos Menduina

Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de
Madrid, Ciudad Universitaria, 28040, Madrid, Spain. E-mail: carlos@ender.quim.ucm.es

Received 24th January 2002, Accepted 26th February 2002
First published as an Advance Article on the web 20th May 2002

The second virial coefficients of two-center Lennard-Jones molecules which contain an embedded point dipole
have been determined via numerical integration. A number of models with different reduced bond lengths and
dipole moments have been considered. For each model the second virial coefficient has been calculated for a
number of temperatures. It is shown that the presence of the dipole moment significantly raises the Boyle

temperature and, for a given temperature, reduces the value of the second virial coefficient with respect to the
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non-polar model. It is shown that the model can describe correctly the second virial coefficient of some

refrigerants.

I. Introduction

The equation of state of a low density gas can be described by
the virial expansion. The virial expansion expresses the com-
pressibility factor as a function of density, with temperature
dependent coefficients known as virial coefficients. Both the
second and the third virial coefficients can be measured experi-
mentally' for both pure fluids and their mixtures. The second
virial coefficient provides information concerning the intermo-
lecular forces between a pair of molecules. Similarly the third
virial coefficient provides information about the intermolecular
forces between three molecules, etc. In the nineteen thirties and
forties it was shown that the virial coefficients may also be cal-
culated if the intermolecular forces between molecules are
known.®!' Second, third, and fourth virial coeflicients can
be computed by evaluating integrals involving two, three and
four molecules respectively. The expression for the second vir-
ial coefficient B, is especially simple, being given by minus one
half of the integral of the angle-averaged Mayer function over
all possible values of the distance between the centers of mass
(i.e. reference points) of the two molecules. For molecules
which have spherical symmetry, the second virial coefficient
can be easily computed, either analytically'*'* or numerically.
When the molecule is non-spherical then one must compute
the second virial coefficient numerically, although in some
select cases it may be computed analytically, for instance in
the case of hard convex bodies'* or their Kihara counter-
parts.15 16

One of the most popular models used to describe the inter-
action energy between non-spherical molecules is the interac-
tion site model (ISM).'! In this model atoms or groups of
atoms in the molecule are replaced by Lennard-Jones interac-
tions sites. Probably one of the simplest ISM is the two center
Lennard-Jones model (from here on denoted as the 2CLJ
model). In this model the molecule is described by two Len-
nard-Jones (LJ) sites (with parameters ¢ and o) whose centers
are separated by a distance L. This model can be used to repre-
sent diatomic molecules, such as N5, O, , F,, Cl, efc. Determi-

t Electronic supplementary information (ESI) available: computer
programs and ancillary data. See http://www.rsc.org/suppdata/cp/
b2/b200781a/
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nation of B, for 2CLJ models was first performed by Maitland
et al. twenty years ago'” and more recently by Boublik.'®

The 2CLJ is an interesting model, although it lacks one
important feature: a multipole moment. In a recent study'’
the second virial coefficients of 2CLJ models which have an
embedded ideal quadrupole moment (2CLJQ) were evaluated.
In the study a number of molecular elongations (defined by the
reduced bond length L* = L/o) and values of the reduced
quadrupole moment (Q*)* = Q?/(¢6”) were considered. The
effect of the quadrupole moment on the Boyle temperature
Tg and on B, and the possibility of describing real substances
using the 2CLJQ model was discussed. In a similar manner this
work treats a 2CLJ model which contains an embedded ideal
dipole moment. The model consists of two identical LJ sites
separated by a distance L with an ideal dipole moment located
at the center of mass of the molecule. We shall denote this
model as the 2CLJD model. The 2CLJD model represents a
logical extension to the Stockmayer?® potential which consists
of one LJ site plus an ideal dipole moment. The Stock-
mayer potential has proven to be useful in describing the
second”'* and third virial coefficients® of dipolar substances.
In this work the second virial coefficient as a function of the
temperature has been numerically calculated for several 2CLID
models. This model is of interest from two points of view; from
a fundamental perspective it provides a better understanding of
the effect that the dipole moment has on the second virial coeffi-
cient, and from a practical point of view it may be used to
describe the second virial coefficient of real substances.

We shall consider the case of a dipole moment that is aligned
with the molecular axis as well as the case where the dipole
moment forms an angle, a, with the molecular axis. To the best
of our knowledge the only previous calculations of B, for
2CLJD molecules are those by Vega et al.?S for the refrigerant
moleczl711e CH;CHF, (R152a), and those of Kohler and van
Nhu.

A number of remarks should be made concerning the use of
the 2CLJD model to describe real substances. Firstly, given
that the model has no polarisability then dipole-induced dipole
effects are non existent. Due to this we should see a small dif-
ference (of the order of 5%) in the interaction potential for the
2CLJD model when compared to ‘real molecules’ having ani-
sotropic polarisabilities. Secondly, in the model described here
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use is made of an ideal, point like, dipole rather than a charge
distribution. Values for B, will be noticeably different for point
like dipole model and a model with a charge distribution.
Finally, in this study, the Lennard-Jones sites are of equal size.
However, real diatomic molecules that have a dipole moment
are formed by two distinct atoms. Thus HCI has a dipole
moment whereas N, does not; the bonding of two identical
atoms or groups can not lead to the existence of a dipole
moment in the molecule. In view of this the 2CLJD model with
two identical LJ sites does not seem to be the best candidate to
describe a real dipolar diatomic molecule. The Stockmayer
potential also suffers from this unrealistic aspect; i.e. a spheri-
cal molecule cannot have a dipole moment. This is not to say
that a model could not be devised that has a spherical aspect
whilst having an anisotropic charge distribution.

Having said this the study of the 2CLJD is interesting for
two reasons. Firstly by comparing the results of the 2CLJ,
2CLJQ and 2CLJD models one can assess the influence of a
quadrupole or a dipole moment on the second virial coeffi-
cient, since the dispersion forces are exactly the same in the
three models. Any differences can be attributed to the presence
of polar forces. A second justification for the study of the
2CLJD model is the ability to explore the parameter space
of the model. The second virial coefficient of the 2CLJD model
depends on the reduced temperature 7* = T/(¢/k), the
reduced bond length L*, the reduced dipole moment (u*)>
and the angle formed by the dipole moment with the molecular
axis o. In this work we have explored the dependence of B, on
these four independent variables. This is probably the limiting
number of independent variables for which a comprehensive
study can be readily performed. In total the number of models
considered in this work amounts to 11 different elongations, 8
values of the dipole moment and 4 different angles, resulting in
352 different models having been considered. For each of these
352 models approximately 300 different temperatures were
considered. For a heteronuclear diatomic 2CLJD model, there
would be three additional independent variables, namely the
ratio between ¢ of the two LJ sites, the ratio between the ¢
values of the two independent sites and the direction (from
the smaller to the larger or from the larger to the smaller atom)
of the dipole moment. Therefore a comprehensive study of het-
eronuclear 2CLJD models is out of the question. Of course this
is not to say that one cannot easily compute B, for a particular
heteronuclear model.

The scheme of the paper is as follows. In Section II details of
the model and the calculation of B, are given. In Section III,
results for B, and Ty for different 2CLJD models are pre-
sented. Finally in Section IV we apply our results for the
2CLJD to the description of B, of real substances.

II. Model and calculation details

In this work molecules are described by a two center Lennard-
Jones model (2CLJ). The two sites are identical and are located
at a distance L. The parameters controlling the Lennard-Jones
interaction (LJ) are o and . A point dipole is located at the
center of mass of the molecule. We shall denote this model
as the two center Lennard-Jones dipolar model (2CLJD).
The model is described by two reduced quantities, namely,
the reduced bond length L* = L/¢ and the reduced dipole
moment (u*)> which is given by

l2
W)=, (1)

The pair interaction between a pair of molecules is given by:

2
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where uj’ and upp are given by:
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where r;; is the distance between site i of molecule 1 and site j of
molecule 2, r* = r/g is the reduced distance between the cen-
ters of mass of the molecule. We also have ¢; = cos(,),
s; = sin(0;) and ¢, = cos(¢p, — ¢1). 01, 0, and ¢, are illustrated
in Fig. 1. Notice that the dipole moment is a vector. The angle
formed by the dipole moment with the molecular axis is repre-
sented by o. The reduced second virial coefficient B,* = B,/ ¢
has been computed as a function of the reduced temperature
T* = T/(¢/k) for a number of linear models. We have consid-
ered models with L* =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1 and with (,u*)2 =0,1,2,3,4,6,8, 10. For each of the
models the following values of o were considered « = 0, 30,
60, 90°. The case o = 0 corresponds to the situation where
the dipole moment is aligned with the molecular axis, whereas
the case o = 90 corresponds to the case where the dipole
moment is orthogonal to the molecular axis. The total number
of models considered is 11 x 8 x 4 = 352.

The value of the second virial coefficient of a pair of mole-
cules can be obtained by evaluating the following expression:

B, = —;/ ((exp(—pu)) — Dénr* dr (5)

where f = 1/(kT), r is the distance between the center of mass
of two molecules and (exp(—f u)) is the orientational average
of the Boltzmann factor between two molecules for a fixed
value of r. Obviously the complexity of the calculation of B,
for a non-spherical molecule arises in the determination of
(exp(—f w)). In this work (exp(—p u)) was evaluated for each
value of r using Conroy’s integration method.”® We follow
Nezbeda et al.®® and generate 76079 relative orientations for
each value of r.%° The average (exp(—p u)) is evaluated for
451 different values of r (from r = 0 up to r = 20¢). Finally
the integral of eqn. (5) is obtained by using Simpson’s integra-
tion rule. We estimate the typical uncertainty of our calcula-
tions of B, to be of the order of 1%.

Fig. 1 Schematic diagram of the 2CLJD model used in this work.
The vector representing the dipole moment forms an angle « with
the molecular axis.
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For each model B has been evaluated for about 300 differ-
ent temperatures. The temperatures were chosen so that the
largest temperature is slightly higher than the Boyle tempera-
ture and the lowest temperature is one for which B; adopts a
large negative number.

III. Results

The number of generated data points for B, is of the order of
100000 and as such precludes tabular representation. In view
of this the source data can be obtained directly from the
authors or as electronic supplementary information (ESI).t
We shall now discuss some of the results of this work. Let us
start by analyzing the effect of the dipole moment on B,.
For this purpose we shall compare B; for two models with
the same elongation but having different dipole moments. In
Fig. 2 results are shown for two models with the same aniso-
tropy (ie. L* = 0.5) but with different dipole moments (i.e
(#¥)* = 0 and 6). Results are presented as a function of the
reduced temperature 7*. As expected, for a given temperature
the second virial coefficient is lower for the dipolar model.
Notice that although the un-weighted orientational average
of the dipolar potential is zero, (upp) = 0,3 this is not the case
for the average of the Boltzmann factor. Therefore, the pre-
sence of the dipole increases the strength of the attractive
forces in the system thus explaining the decrease in B, for a
given temperature. For spherical dipolar and quadrupolar
molecules this was shown by Keesom.>'**? It is interesting to
compare the results of the two models with (u*)> = 6, for
example the o = 0 model and the & = 60 model. As can be
seen the second virial coefficient of the model with a non-zero
value of « is lower than that of the model with « = 0. This was
observed previously by Vega et al.?®

In addition to the second virial coefficient calculations we
have also determined the Boyle temperature, Ty, of each
model. The Boyle temperature is defined as the temperature
at which the second virial coefficient vanishes. In Table 1 the
Boyle temperature for some 2CLJD models with o = 0 are
presented, and for « = 60 in Table 2. As can be seen Tp
decreases with L* and increases with (u*)*>. By comparing
the results of Tables 1 and 2 it can be seen that the Boyle tem-
perature also increases with the value of o. This means that for
a certain value of L* and (u*)* the second virial coefficient
becomes more negative as o increases. In other words, a
non-axial dipole moment is more efficient in reducing the sec-
ond virial coefficient (increasing the Boyle temperature) than

B,/c’

-100

Fig. 2 Reduced second virial coefficient B; = B,/a” for L* = 0.5 as
a function of the reduced temperature 7% = T/(¢/k) for molecules
with (u¥)*> = 0 (solid line) and (1*)> = 6 with o = 0 (dashed line)
and (u*)” = 6 with & = 60 (dash-dotted line).
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Table 1 Reduced Boyle temperature for 2CLJD model with o = 0.
The results for L* = 0 correspond to the Stockmayer potential (one
LJ site with a dipole moment) as opposed to two superimposed LJ sites
with a dipole moment

(*y
L* 0 2 4 8 10
| 3.978 4.046 4236 4.890 5.308
0.8 4.688 4767 4.989 5.750 6.237
0.6 5.851 5.946 6211 7.127 7715
0.4 7.821 7.937 8.264 9.402 10.140
0 3.417 4010 5321 8.716 10.616

an axial dipole moment. The Boyle temperatures of all the
models considered in this work can can be obtained as ESI.{
We have fitted the reduced Boyle temperature 7' in the range
L* = (0.2, 1) to the following empirical formula:

Ty = (di +doL* + ds L + dy L™ + dsL™)
+x((fi +foL* +f1L™).
+ (fa+fsL" + fsL7)x
+ (i + KL+ fHL)E
+ (fio +/uL" +fi2L?)x%)
+ ax((e1 + e L* + e3L? + eqx + esx?)
+ (eg + e7L* 4 egL*? + egx + ejox?)a
+ (11 + el + e L™ + eax + egsx?)a
+ (e16 + e17L* + e1gL*? + ejox + e0x?)) (6)

2

where x = (u*)°. Values of the coefficients d;, f:,and e; are pre-
sented in Table 3. The sum of errors of the fit of eqn. (6) is

288 * s fit
1 ‘TB - TB

Nooms 0.02. (7)

We shall now compare the second virial coefficient of a dipo-
lar and a quadrupolar model with the same reduced bond
length. In Fig. 3 the values of B, are plotted for two models
with L* = 1, one of them having a quadrupole moment of
(0*)* = 4 and the other with a dipole moment (u*)* = 4. As
can be seen, for identical values of the reduced multipolar
moment the quadrupolar model presents the smaller second
virial coefficient. The quadrupole moment is more efficient
than the dipole moment in reducing the second virial coeffi-
cient of a 2CLJ model at a certain temperature (given the same
reduced multipole moment). The vapor-liquid equilibria of the
2CLJD model have been determined via Gibbs—Duhem inte-
gration simulations by Lisal et al.>* The vapor—liquid equili-
bria for the 2CLJQ model have also been determined from
the NpT + test particle method by Stoll ef al.** It is found that
for a certain elongation the critical temperature of the quadru-
polar moment is higher than that of the dipolar model when
the same value of the reduced dipole moment is used. The
results of Fig. 3 are consistent with this observation. Another

Table 2 Reduced Boyle temperature for 2CLJD model with « = 60

(*y
L* 0 2 4 8 10
1 3.978 4.101 4.445 5.641 6.454
0.8 4.688 4810 5.147 6.270 6.974
0.6 5.851 5.979 6.335 7.533 8.287
0.4 7.821 7.960 8.351 9.695 10.556




Table 3 Parameters of the fit (see eqn. (6 ) of the main text) for the
reduced Boyle temperature of 2CLJD models. This fit is valid for
reduced bond lengths between 0.2 and 1, for (u*)* smaller than 10
and for values of o between 0 and 90

dy = 16.05429687554756

d> = —30.53813239991681

dy = 30.14164265332427

dy = —14.08558417650496

ds = 2.406606047549587

fi = —0.172327610799913

> = 0.627540094530006

/3 = —0.493778497229557

fu = 0.145317892481520

fs = —0.406323035035317

fo = 0.299940813391917

f5 = —1.700872159110936 x 1072
fs = 5.932041964753851 x 107>
fo = —4.611937237060716 x 1072
fio = 7.969772314238590 x 10~
fi1 = —2.928499196763296 x 107>
fi2 = 2.297075198272710 x 1073
e; = 1.418043183518705 x 107*
e, = —1.051975059038994 x 1073
e3 = 8.314550749680474 x 1074
ey = —0.263449668027011

es = —5.756179604769289 x 1072
eg = —2.625043151678408 x 10~°
e7 = 8.203467627872130 x 1072
eg = —2.206233257841825 x 107°
ey = 1.610246501293106 x 1072
e10 = 3.517633816676780 x 1073
e11 = 7.659997874532446 x 10~°
e, = —6.950614544672141 x 1077
e13 = —4.359390762535273 x 1078
e1s = —2.926823382923164 x 1074
e1s = —6.396214546640412 x 107°
e16 = 1.290199629163741 x 10~°
e17 = 5.977694565243003 x 10~ 1°
ers = 2.045156412928934 x 10~°
e1o = 1.625620924811126 x 10°°
ex0 = 3.553691310366128 x 1077

comparison that can be made is between a dipolar and a quad-
rupolar model which both have the same Boyle temperature.
For L* = 1, the dipolar model with (1*)* = 6 has practically
the same T} as the quadrupolar model with (0%)? =4. In

B,/o”

Fig. 3 Reduced second virial coefficient for models with L* = 1.
Results for a dipolar model with (u*)* =4 and « = 0 (solid line)
and a quadrupolar model with (Q*)2 = 4 (dashed line).

Fig. 4 results for B, for these two models are presented. As
can be seen the dipolar model has the lower value of the second
virial coefficient.

An interesting property is the ratio of the 75/ T, where T, is
the critical temperature. This ratio has been analyzed in detail
for several spherical fluids by several groups.>**® For a spheri-
cal LJ fluid this ratio is 2.6. In Table 4 this ratio is presented
for several quadrupolar and dipolar fluids. For L* = 0 critical
properties were taken from simulations results of refs. 37-40.
For 2CLJQ and 2CLJD models critical properties were taken
from refs. 34 and 33 respectively.

The ratio of T/ T, obeys the following rules. For non-polar
models the ratio Tg/T. decreases as the reduced bond length
increases. For quadrupolar models (2CLJQ) with a given
reduced bond length L* the ratio Tg/ T, decreases as the quad-
rupole moment (Q*)? increases. This reduction is more pro-
nounced as the molecule becomes more spherical (i.e. as L*
becomes smaller). For dipolar fluids (2CLJD) with a given
reduced bond length the ratio 7g/7, decreases for moderate
values of the dipole moment, reaches a minimum and then
increases as the dipole moment increases. The effect of the
dipole moment on Tg/T. is much smaller than the effect of
the quadrupole moment on this ratio. As can be seen the ratio
Tg/ T, decreases as the anisotropy of the intermolecular forces
increases (except for high dipole moments where this trend is
inverted). The anisotropy of the intermolecular forces
increases with the molecular elongation L* and with the polar
forces (i.e. quadrupolar or dipolar). Therefore one may suspect
that the ratio Tp/7. decreases as the acentric factor, o,
increases. This idea has been recently proposed by Iglesias-
Silva and Hall.*!

In the following section the results of this work are used to
describe the second virial coefficient of real substances.

IV. Application to real substances

The purpose of this section is to use the results of the previous
section to describe B, for real substances. Our goal is not to
provide an extensive test of the performance of the 2CLID
in describing B, for real substances, but rather to provide a
few illustrative examples.

It would be interesting to have an empirical expression for
B, as a function of T*, «, (u*)* and L*. This would allow
one to use values of «, (u*)* and L* different from those used
in this work (say for instance L* = 0.43, o =20, and
(1¥)* = 3.47). In view of this an effort was made to obtain a
fit, using up to 50 parameters. However, the results were not
satisfactory since the deviation between the tabular data gener-
ated in the previous section and the empirical fit was signifi-
cant. For that reason we decided to use the tabular data
generated in the previous section to describe real substances.

Therefore the question is the following: given a certain
model, (i.e. a value of L*, o and (1*)?), along with a list of
By* for many reduced temperatures 7*, which values of &
and o best reproduce the experimental results of B,? Notice
that the conversion from reduced units to experimental units
can be easily performed given

T/K =T"(¢/k) (8)
By/em?® mol™! = 0.6023 Bja® 9)

where ¢ is given in A and (¢/k) is given in K. Refrigerants are
good candidates to be modeled using the 2CLJD model. Most
refrigerants are halogenated derivatives of methane and ethane
and for these the 2CLJD appears a reasonable model. More-
over they are substances of high technological interest and as
such their virial coefficients have been studied in great detail.*?
Three substances have been selected, namely CH;Cl,
CH;CHF, and CH3;CH,Cl. The experimental values of the
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Fig. 4 Reduced second virial coefficient for models with L* = 1. Results for a dipolar model with (u*)*> = 6 and « = 0 (solid line) and a quad-
rupolar model with (0*)> = 4 (dashed line). Both models have the same Boyle temperature.

second virial coefficient for these three substances were taken
from the compilation of Dymond and Smith.** For each sub-
stance the highest and lowest temperatures considered corre-
spond to the highest and lowest temperatures included in the
compilation. For each model we determine the values of ¢
and ¢ that minimize the deviation with respect to the experi-
mental results, i.e. we minimize the function

o= (B - B)” (10)

When the second virial coefficient of a certain model was
required at a reduced temperature that was not available in
our tables, we used a linear interpolation procedure. Since
the number of temperatures for which B, is available for each
model is of the order of 300, we believe that this interpolation
procedure results in an acceptably small error. The FOR-
TRAN program that allows one to choose the model that best

Table 4 Ratio of the Boyle and the critical temperature, 7/ 7., for
several polar models. Boyle temperatures for 2CLJD as obtained in
this work. Boyle temperatures for 2CLJQ as reported in our previous
work."” The critical temperatures of the 2CLJQ and 2CLJD models
were obtained from computer simulations as reported in refs.
33,34,37-40

Quadrupolar models

L* (0% T. Ty Ts/Te
0 0 1.31 3.42 2.61

0 1 1.60 3.78 2.36

0 2 225 4.70 2.09
0.6 0 245 5.85 2.39
0.6 2 2.58 6.00 2.32
0.6 4 2.87 6.34 2.21
Dipolar models

L* (u*y T. Ty Ty/T.
0 0 1.31 3.42 2.61

0 2 1.61 4.01 2.49

0 4 2.07 5.32 2.57

0 6 2.55 6.93 2.71
0.505 0 2.71 6.66 2.46
0.505 2 2.75 6.77 2.46
0.505 4 291 7.05 2.42
0.505 8 3.27 8.09 2.47

3004 Phys. Chem. Chem. Phys., 2002, 4, 3000-3007

describes a certain experimental data set is available upon
request and as ESI.{

In Table 5 we present the root mean square deviation
between experimental and calculated values of B, for different
substances along with the parameters that best describe the
experimental results (for each elongation). Four elongations
have been considered, namely L* = 0, 0.4, 0.5, 0.6. The fol-
lowing conclusions can be obtained from the results of Table
5. The second virial coefficient of the three refrigerants consid-
ered can be satisfactory described by the 2CLJD model. The
deviation between experimental and calculated values is only
slightly larger than the experimental uncertainty. The Stock-
mayer potential (i.e. L* = 0) reproduces the second virial coef-
ficients as well as the models with non-zero values of L*. This
is somewhat surprising since the refrigerants considered are
certainly non-spherical. The 2CLJD model with non-zero
values of L* performs better than a spherical dipolar model
when it comes to reproducing liquid state properties.’® More
realistic models of refrigerants are certainly non-spherical.**
In Table 5 we have also included the values of the dipole
moment and the molecular volume which were obtained using
“optimum” parameters. One may convert from reduced
dipole moment to the dipole moment (in debye) using the for-
mula:

() (e/K) ()

D= . 1
u/ 72433364 (11)

The molecular volume of the molecule can be approximated to
that of a hard dumbbell with a reduced bond length L* and
diameter ¢ using

Vi 2203(1“.5 L*f%(L*)‘%). (12)

Note that in eqn. (12) the volume V, does not account for the
‘excluded’ volume. In Table 5 the experimental values of the
dipole moment are also included. As can be seen the value of
the dipole moment that results from the “optimum” para-
meters does not agree with the experimental value of the dipole
moment.>®*4¢ Also notice that the molecular volume of the
different “optimum” parameters differs significantly. The mes-
sage from Table 5 is the following. It is possible to perform a
reasonably good fit to the second virial coefficient of real dipo-
lar substances. However, if the only criterion for determining
the potential parameters is the minimization of the difference
between experimental and theoretical results, then the resulting



Table 5 Results for the second virial coefficient of real substances as described by the 2CLJD model. For each elongation, we present the model
(i.e. the value of o and (,u*)z) that best describes the experimental values of B, . For this model the root mean square deviation (s) between experi-
mental and calculated values is shown, expressed in cm® mol~". The value of ¢/k (in K) and ¢ (in A) used in the calculations is shown. The first to
the last column corresponds to the dipole moment (in D) as obtained from the calculation and that from experiment (in parenthesis). Finally the
molecular volume of the model V,, (in A3) as given by eqn. (12) of the main text is presented

L* o (u*)? s I € Dipole moment Vi
CH,-Cl

0.0 0 3 7.83 4.10 215 2.47(1.87) 36.08
0.4 60 8 7.58 3.86 93 2.43(1.87) 47.22
0.5 60 6 7.45 3.68 121 2.23(1.87) 44.03
0.6 30 8 7.72 3.54 124 2.46(1.87) 41.62
CH,CHF,

0 0 6 9.18 4.59 118 3.08(2.27) 50.96
0.4 60 10 9.52 3.86 87 2.62(2.27) 47.21
0.5 60 10 9.18 4.13 85 2.88(2.27) 62.69
0.6 30 10 9.48 3.44 120 2.60(2.27) 38.19
CH,CH,CI

0 0 6 11.28 4.24 148 3.05(2.05) 39.91
0.4 90 10 11.42 3.96 94 2.83(2.05) 50.98
0.5 60 10 11.47 3.88 105 2.91(2.05) 51.61
0.6 30 10 11.42 3.28 146 2.67(2.05) 33.10

parameters lack any physical meaning, the dipole moment can
deviate significantly from the experimental value and the mole-
cular volume can be quite different from that obtained from
physical considerations. The second virial coefficient certainly
depends on the pair potential between molecules, but it is
not sensitive enough to discriminate between different molecu-
lar models.

In our view a much better approach to the problem is the
following. One can, for example, impose a molecular volume
from physical considerations. Thus for a given value of L*
the value of ¢ must be chosen to reproduce the molecular
volume using eqn. (12). Once the value of ¢ is fixed from the
molecular volume, one performs the optimization with respect
to ¢ in order to minimize the deviation with respect to the
experimental results.

Approximate molecular volumes can be obtained from
experimental vapor pressure molar volumes using a one center
Lennard-Jones model (see refs. 27,47 for details). However, we
shall adopt the following, somewhat simpler approach; the

volume of CH3CHF, as taken from liquid state simulations
is approximately 50 A*.2° We shall therefore adopt this volume
for CH;CHF,. The volume of CH3;CH,CI should be some-
what larger, and that of CH;Cl somewhat smaller. For simpli-
city we shall simply assume that the volume of the three
substances is of the order of 50 A3, which is qualitatively cor-
rect. The parameters obtained by imposing this molecular
volume are presented in Table 6.

The goodness of the fit as given by the root mean square
deviation are also presented. In Fig. 5, Fig. 6 and Fig. 7 the
second virial coefficient for CH;Cl, CH;CHF, and CH;CH,Cl
are presented. Experimental results and those of the calcula-
tions are presented. The model used in those figures for each
substance is that presented in bold in Table 6. Although the
fit to the data of Table 6 is slightly worse than that presented
in Table 5 the advantage of the procedure is that the potential
parameters are now much more realistic. Moreover it is now
seen that when a reasonable value of the molecular volume
is imposed then an anisotropic model better describes the

Table 6 As in Table 5, but when the molecular volume is fixed to 50 A*. In this case ¢ is not adjusted but is obtained from eqn. (12) of the main
text. Therefore in this table the only parameter that was fitted to reproduce the experimental results of B, is ¢. In bold are shown the models used to

compare with the experimental results in Figs. 5-7

L* o (u*)? s o € Dipole Vin
CH,-Cl

0 0 3 10.17 4.57 191 2.75(1.87) 50
0.4 60 8 7.57 3.93 91 2.47(1.87) 50
0.5 90 6 8.18 3.84 111 2.28(1.87) 50
0.6 60 6 8.58 3.76 123 2.33(1.87) 50
CH;CHF,

0 0 6 10.19 4.57 119 3.06(2.27) 50
0.4 90 8 10.84 3.93 95 2.52(2.27) 50
0.5 60 8 11.21 3.84 106 2.57(2.27) 50
0.6 90 6 13.60 3.76 127 2.37(2.27) 50
CH;CH,Cl

0 0 6 13.71 4.57 138 3.30(2.05) 50
0.4 90 10 14.09 3.93 95 2.83(2.05) 50
0.5 60 10 11.59 3.84 106 2.88(2.05) 50
0.6 60 8 11.88 3.76 130 2.76(2.05) 50
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Fig. 5 Second virial coefficient of CH3Cl as obtained from experi-
ment (symbols)** and from the calculations of this work for the 2CLID
(solid line). The parameters used to describe CH;Cl with the 2CLJD
model are those presented in bold for CH;Cl in Table 6.

experimental results (the only exception being the CHs-
CHF,). The dipole moments obtained from our calculations
tend to be 20% larger than the experimental values. We do
not have an explanation for this; there may be a number of
contributing factors. For example the lack of molecular polari-
sability in the model could account for around a quarter of this
discrepancy. The inclusion of molecular polarisability has been
proved to be important when dealing with dipolar molecules in
the liquid phase,*® though slightly less so for the gas phase.
Also, as mentioned earlier, an ideal dipole is only an approx-
imation to the actual interaction energy between two charge
distributions.

In summary the 2CLJD model provides a good description
of the second virial coefficient of the three refrigerants consid-
ered. The typical deviations between experimental and calcu-
lated values of B,, as given by the root mean square
deviation, is similar to those obtained by empirical correlations
(see the work by Tsonopoulos*® and for an application to
refrigerants see the work by Dymond*?).
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Fig. 6 Second virial coefficient of CH;CHF, as obtained from
experiment (symbols)*’ and from the calculations of this work for
the 2CLJD (solid line). The parameters used to describe CH;CHF,
with the 2CLJD model are those presented in bold for CH;CHF; in
Table 6.
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Fig. 7 Second virial coefficient of CH3CH,Cl as obtained from
experiment (symbols)** and from the calculations of this work for
the 2CLJD (solid line). The parameters used to describe CH;CH,Cl
with the 2CLJD model are those presented in bold for CH;CH,Cl in
Table 6.

V. Conclusions

In this paper the second virial coefficient has been calculated
for a number of two-center LJ models with a point dipole
moment. A number of elongations, reduced dipole moments,
and angles between the dipole moment and the molecular axis
were considered. For each model the reduced second virial
coefficient and the Boyle temperature were determined. All
results are available in electronic format as ESI.f The data
set of the Boyle temperature was fitted to an empirical expres-
sion.

The presence of the dipole moment reduces the second virial
coefficient with respect to that of the non-polar model. The
dipole also increases the value of the Boyle temperature. The
effect is more pronounced for a certain reduced dipole, when
the dipole moment forms an angle to the molecular axis. Thus
a non-axial dipolar moment has a “similar” effect to that of a
larger axial dipole moment. For a certain reduced multipolar
moment, the quadrupole is more effective than the dipole in
reducing B,. The value of T/T,. decreases with L* and with
the presence of polar forces (quadrupolar or dipolar). At large
values of the dipole moment this trend is inverted.

We have shown how the data in this work can be used in the
determination of potential parameters for the pair potential
with a view to reproducing B, for real substances. A first
approach allowing the parameters full freedom yields, in gen-
eral, a reasonable fit, however the parameters lack any physical
meaning. This was illustrated in Table 5. A more reasonable
approach is to impose a value of the molecular volume (as well
as perhaps that of L*) from physical grounds and optimize
only the value of ¢, as was shown in Table 6. When this is done
it is seen that the inclusion of molecular anisotropy improves
the description of real substances. However, it is worth reiter-
ating the idealized character of the 2CLJD model. As men-
tioned earlier true dipolar molecules are heteronuclear rather
than homonuclear. Also, real dipolar molecules can be polar-
ized by a polar molecule, an effect that has been neglected in
this work. The ideal dipole is also an ideal description of the
coulombic interaction energy between two charge distribu-
tions. In fact, a model with two partial charges located in each
of the sites of the 2CLJ model could yield a better description
and has been considered previously in theoretical and simula-
tion work.>%!

We hope the data obtained in this work can be useful for
workers wishing to describe experimental results for B, for real



substances with the 2CLJD model. An area of particular inter-
est is that of refrigerants. Refrigerants are usually ethane deri-
vates, thus the 2CLJD model represents a reasonable first
approximation. Also, workers looking for potential para-
meters to describe liquid properties can make use of this,
and similar, studies. It is possible to proceed in a two step
approach in the search of a potential parameter set. First,
determine a set of potential parameters describing the gas
phase (i.e. the second virial coefficient) and then proceed to a
refinement of the parameters by means of computer simula-
tions in the liquid phase. This approach has been used success-
fully for n-alkanes.>? It should be stated that parameters
describing gas phase properties are not generally transferable
to the liquid phase and vice versa. It should be mentioned that
three body forces play an important role in determining liquid
phase properties, whereas they have a diminished role in the
gas phase. Therefore, potential parameters determined for
the liquid phase can be considered as effective potential para-
meters rather than the true pair potential parameters. In any
case, having a reasonable potential parameter set correctly
describing the second virial coefficient is a great help, since
usually a minor modification of the model (typically decreasing
¢ by a 10%) yields a reasonable model for the liquid phase.

Along with this work the second virial coefficient of 2CLJ,
2CLJQ and 2CLJD models is now available. Some future
areas of interest would be the determination of the third virial
coefficient for these models. For example a comprehensive
study of the third virial coefficient for the non-polar 2CLJ
model is yet to be undertaken (a small number of data points
have been reported in ref. 53).
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