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A perturbation theory for angular molecules interacting through the Kihara potential is 
proposed. The theory is applied to a model of propane and the different approximations of the 
theory are checked by comparing the theoretical with previously obtained simulation results. 
We also obtained vapor-liquid equilibria of propane by fitting the potential parameters with 
the theory. Good agreement between theoretical and experimental results was obtained. Thus, 
the Kihara potential which is much simpler than the site-site model for this kind of molecule is 
able to represent the equilibrium behavior of angular nonpolar molecules. 

1. INTRODUCTION 
Angular molecules, as propane, are of high interest for 

industrial purposes. The effort to understand thermodynam- 
ic properties of propane from a microscopic point of view has 
been devoted to simulation studiesid and to the development 
of perturbation theories. 4 In the cases, the potential model 
used was the site-site Lennard-Jones ( 12-6). Two conclu- 
sions can be drawn from these studies. The first is that the 
site-site potential model is a good effective pair potential for 
propane as it has been shown from the simulation studies. 
The second is that the perturbation scheme proposed by 
Fische? and extended to propane by Lustis can yield good 
agreement with experimental results if the potential param- 
eters are fitted within the framework of the theory. However, 
the situation is not completely satisfactory in three respects. 
First, the theory systematically gives too high pressures at 
high densities. Second, the potential parameters are obtained 
using the theory and, therefore, they compensate the theo- 
retical errors and partially lose their physical meaning. 
Third, the theory can only be improved if a systematic study 
of the reference system is carried out. Unfortunately, this is 
an extremely difficult task when the Weeks, Chandler, and 
Andersen (WCA) -like division of the potential6 is applied to 
the full pair potential. Therefore, although the search for 
better potential parameters within the sit&site model of pro- 
pane can be continued and improvement can be expected, 
this improvement of the perturbation scheme is difficult by 
itself due to the difficulties involved in the simulation of the 
reference system. 

On the other hand, Kihara proposed some time ago’ a 
potential model in which the pair interaction depends on the 
shortest distancep between the molecular cores. These cores 
are chosen to represent the molecular shape approximately. 
Several simulation studies have been recently performed for 
this model in linear8~Y and nonlinear molecules. lo These 
studies have shown that the Kihara potential is a good effec- 
tive pair potential and can compete with the site-site model. 
Moreover, the comparison of Kihara and site-site model po- 
tentials with ab initio results for some relative orientations of 
propane revealed the superiority of the Kihara model over 
the site-site.” Therefore, there are good reasons to continue 
with the theoretical study of the Kihara potential using per- 

turbation theories. Recently, two studies of this type”*‘2 
have appeared. The first one extends the perturbation theory 
of Fischer to linear molecules interacting through the Ki- 
hara potential. The second uses the formalism of the average 
surface-surface correlation function. Again, systematic de- 
viations from experimental results were found when the per- 
turbation scheme of Fischer was applied to linear Kihara 
molecules.” However, the situation is now better than with 
the site-site model because the reference system can be stud- 
ied systematically through simulation.9*10~13 The different 
approximations of the theory can be checked one by one, and 
that allows a systematic improvement of the theory. We have 
already worked with linear molecules in that directionI 
showing that themain failure of the theory comes from neg- 
lecting the orientational dependence of the background cor- 
relation functiony( rn,,o,,u+). The goal of this work is three- 
fold. The first aim is to extend Fischer’s perturbation scheme 
to nonlinear molecules interacting through the Kihara po- 
tential and to apply the theory to a previously studied model 
of propane. lo The second goal is to test the different approxi- 
mations made in the theory by comparing the theoretical 
values of the first perturbation terms A,, A ,, and A, with the 
values obtained by simulation. We shall show that a good 
description of the three perturbation terms is achieved, al- 
though at high densities a more elaborated approximation to 
get the structure of the reference fluid is needed. The third 
purpose is to see whether one can obtain a good description 
of the behavior of real propane, using the Kihara potential 
along with perturbation theory as long as the potential pa- 
rameters are obtained from fitting theoretical to experimen- 
tal results. 

With this study we try to show that the Kihara model 
can give results similar in accuracy to those obtained from 
the site-site one, for small nonpolar molecules, as propane. 

The scheme of the paper is as follows: in Sec. II we shall 
describe in detail the theory used. In Sec. III, we show the 
numerical procedure used in the calculations. Section IV is 
devoted to checking one by one the different approximations 
of the theory by comparing theoretical with previously ob- 
tained MD results of the model. In Sec. V, we apply the 
theory to propane and a comparison with experimental re- 
sults is given, Finally, Sec. VI gives the main conclusions. 
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PIG. 1. Geometry of the Kihara model of propane. The core is made up by 
two fused, hard rods which form an angle 1. Roman numbers refer to the 
regions defined in the Appendix. These regions are separated by-dashed 
lines. 

II. THEORY 
The potential model used in this work and which will be 

denoted as Kihara model for angular molecules is given by lo 

u(p) = 4E[ (a/p)‘2 - (a/p,“1 . (1) 
p = minimum @lltp12,p21~22) (2) 
p,, = shortest distance between (rod, of molecule 1 

f. 
- rod] of m.olecule 2)) 3 

where p is the minimum distance between molecular cores. 
The molecular core is given by two connected rods for angu- 
lar molecules (see Fig. 1) and, therefore, the shortest dis- 
tance between the cores, is the minimum between the four 
rod-rod shortest distances. 

The division of the full pair potential into reference u. 
and perturbation part U, is given by’4 : 

q-l = u(f-12,wgq) 

- Umin (@1@2) r~2<r~2rni~~wl;w2)~ 4. ” Jtj 
uO = O y12 > Y12min (@12@2)9 .r (5) 
uI = Umin (wI%w2) y12 <r12min (w*1w2)3 (6) 
Ul = U(Y*2,%g'2) rIZ > r12min (W1@2)2 (7) 

where ri2 is the distance between molecular centers of mass 
ad rl2min (w,,wZ) is the value of Y,* at which-a minimum in 
the pair potential for a given orientation (wl,wZ) is achieved. 
urnin (wr,wJ is the potentiiil value’ at the’ minimum. When 
division given by Eqs. (4)-(7) is applied to the potential of 
Eqs. (-l)-(3) one obtains” “. r. 

uo = U(Y,2,WIW2) + E p <2?7, *” (8) 
uo = 0 p > 2’%, 1 (9) .-,_ 
u, = - E p<2?r, (10) 
21, = u(r,2,w,,w2) p > 2”6cr. (11) 

The residual Helmholtz free energy A’ of the system can 
be expanded around that of the reference system A,, to give I5 

--d-A, A, A, 
NkT NkT+‘Nk?+NkT’ (12) 

where the first and the second order perturbation terms A, 

and A2 are, respectively, given by, 

-I 

.L 
AdN:~=.d2 u1(r12~1,~2)go(r12,w1,wz) 

xdr,, dw,dw,= (UJo, 

U,=CCu,(ij);. 
icj 

(13) 

(14) 

, A= - 1/(2kT)((Uf),- (u,>;h (15) 
where brackets with subscript 0 stand for canonical ensem- 
ble average over the reference system andg,( ti,+,,w2) is the 
pair correlation function of the reference system. The nu- 
merical density of the system is given by h. Thus, to obtain A 
in‘ Eq. (12), it is necessary to know the structure and the 
thermodynamic prop&ties of the reference system. Fischer5 
and later Custig4 proposed a perturbation scheme consisting 
of the following steps: .“_.. 

( 1) A BLIP expansion’6 of a hard system uH around the .-. j_. 
softrepulsive.system u. is made. In this expansion either the 
site-site distance (in the site-site model) or the rod length 
(in the Kihara model) is kept constant. Thediameter of the 
hard equivalent body at every density and temperature is 
found by setting to, zero the first order. term in the BLIP 
expansion: .- . : m- 

,.. 
n/2 

s 
[exp( -Bug) - exp( --PuH)] 

Xy,(r,,,w,w,)di,, da, dw, G 0 1 L (16) 
so. that the residual Helmholtz free energy of the reference 
system can be written to first order of-the BLIP expansion as 

A, = A,, (17) 
where,A, is the residual Helmholtz free energy of the corre- 
spor$$g hard body. 

.I* 

(2 (<n .can be obtained from any of the available equa- 
tions of state (EOS) proposed for hard convex bodies. i’ We 
shall use three of these’EOS in-this work. .A11 of them can be 
written in a generalform as. 

. 

z, =g$== Cl81 i --iii 
7 = nI/H’* “’ / (19) 
The value of the constants.k,, I&, and k, for the different 

equations of state’8-iod are given in Table I.’ These constants I_ 
are always related to the nonsphericity parameter a’defined 
W a.: 

1; 

Q =.@,S,)/(3V,), (20) 
. . 

~j_ 
TABLE LValues of the parameters k,, k,, and k,,ofEq. ( 18) of the text for 
three different EOS,of hard convex bodies. 

EOS .- k;- k2 k, 

ISPT” (3E-2). (3a’-.3a+l) -& 
Nezbeda” + (3f.Y - 2) (a’ -t a,7 1) --a(5a:4) 
Boublik’ (3ar2) (3a’-3a+ 1) - a(6a - 5) .~ 

a Reference 18. 
“Reference 19. 
’ Reference 20. 

I 

_. 
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where R,, S,, and V, stand for the mean radius of curva- 
ture, the surface,and the volume of the molecule, respective- 
ly. The residual Helmholtz free energy of the hard system 
can be obtained from integration of Eq. ( 18) to obtain 

around a spherical RAM potential Cp,,, ( r,2) defined by I6 

ew[ --D@RAM (r,29] = (ewl. -bW~,2,~1,~291)g, 
m-5) 

A H /NkT= l?(c’ + “‘) + c ln( 1 - 79 
(l-792 3 ’ 

(219 

cl = (k, -k, + 29,” (229 
c2 = (3k, + k, - k, - 3)/2, (239 

c,= -(k,+ 19. (249 
The mean radius of curvature-R, is well defined for 

convex shapes,Z’ and therefore, a is uniquely defined for 
convex bodies. Indeed, the hard body corresponding to the 
Kihara angular model (see Fig. 1) is not convex. Therefore, 
if we wish to use any of the proposed EOS for hard convex 
fluids we have to define a. We have examined two possibili- 
ties. 

(2a) To evaluate the actual value of the volume V, and 
surface S, of the hard body and to take R, from a convex 
body of shape close to the molecular shape.J For angular 
molecules a reasonable choice of this close convex body 
could be that of the parallel body to the triangle made up by 
the two rods. Details of the evaluation of S’,, and V, for 
angular hard models as well as the well known formula of 
R H for the parallel body of a triangle are given in the Appen- 
dix. 

where the subscript g stands for geometrical average. The 
zero order approach to y0(r12,w,,w2) is given by 

Yo(YIzJ~IJ~~) =YRAM(~~~), (279 
where yRAM ( r,2) is the background correlation function of 
the system interacting through QRAM (r,2). With the ap- 
proximation of Eq. (279, g0(r12,w,,02) is given by 

gO(~,2,~~,~J = exp[ - &,(~,2,~1,~29 IYRAM (r,29. (289 
According to Eq. (28) the radial distribution function 

of the reference system G, ( rr2) is given by 

G,(r,29 = (&(h%~,)), = GRAM (P,29, (299 
and using Eqs. (13) and (289, A, can be written as 

J 

m 
A4,/N= 2mr G4 exp( -Ph9), 

xY~Lh4 (r*2982 dr*2- (309 
(4) the OZ equation for the potential @,,, (r& 

h(r,,9 = C(T,a9 + n J c(r,,9e-*,9dr,, (319 

(2b) To obtain a by identifying the second virial coeffi- 
cient of the hard nonconvex molecule B,,, with that one of a 
convex body of nonsphericity given by (*r as was done in Ref. 
22, i.e., 

along with either the Percus-Yevick (PY) or the reference 
hypernetted chain (RHNC) closure relations I5 

c(r129 = [l +h(r,,910 -exp[ -Bu(r,,91) (PY9 
(329 

c(rn9 = h(r,z> - B,, O-129 - Bu(rn9 

B2,,/VH = (1 + 3~x9. (259 

Both choices of cy [ (2a) and (2b) ] have been consid- 
ered in this work and a discussion of the results is given in the 
next section. Thus, Eqs. ( 17)-(24) can be used to determine 
the properties of the reference system. 

The evaluation of the perturbation terms A, and A2 also 
requires the knowledge of the structure of the reference sys- 
tem. Although considerable progress has been achieved dur- 
ing the last few years in the solution of integral equations for 
anisotropic linear models,23-z5 very little has been done for 
nonlinear models. The majority of the structural studies of 
nonlinear molecules are based on the solution of the site-site 
Ornstein-Zernike (SSOZ) equation for multisite models.“6 
The SSOZ presents the disadvantage that can only be ap- 
plied to site-site fluids. Simple models based on Gaussian2’ 
or Kihara potentials are out of the applicability of the SSOZ. 
Furthermore, the solution of the Ornstein-Zernike equation 
(OZ) for hard nonlinear models would need a great amount 
of computer time and perturbation theory based on this solu- 
tion would be a long time procedure, thus losing its simpli- 
city. Therefore, a compromise between accuracy and simpli- 
city is needed to obtain the structure of the reference system. 
Reference average Mayer function (RAM) theory I6 pro- 
vides such a compromise and will be used as explained in 
point (3). 

- In[h(r,,9 + 11 (RHNC), (339 
must be solved to obtain y,, (r,2).Herec[r,2) isthedirect 
correlation function and h (r,z) is the total correlation func- 
tion. In the case of the RHNC, the bridge function B,, (r) is 
taken to be equal that of a system of hard spheres whose 
diameter d,, is given byz8 

J O1 [GRAM (~I29 - G,s(r12)]dBJ~(~i29 dr,, = 0. (349 
0 HS 

Examples of the shape of the potential QRAM (r,2) for 
several systems and a discussion of the quality of PY and 
RHNC approximations for this potential can be found in 
Ref. 13. 

(5) The Az term involves the correlation functions of 
two, three, and four particles of the reference system and its 
exact evaluation is very difficult. I6 We shall use a generaliza- 
tion of the Barker-Henderson approximations29 (macro- 
scopic compressibility and local compressibility9 to non- 
spherical fluids. These approximations were already used by 
Boublik for nonspherical fluids. I2 Thus, we approximate A2 
by @ m<4 exp( -b’u,9), 

XYRAM (~12162 6, (359 

(3) The structure of the reference system will be ob- 
tained from a zero order approximation of the background 
correlation function of the reference system yo(r,2,~,,~Z) 

A,/NkT= -E[g)o&ns,” (uf exp( -Pu,)), 

XJJRAM (r12162 dr,z- (369 
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Equations (35) and (36) are called the macroscopic (m.c> 
and the local compressibility (1.~) approximations, respec- 
tively. Equation (12), Eqs. (17)-(25)’ Eq. (309, and Eqs. 
(35) and (36) constitute the perturbation scheme of this 
work. Different variants of the theory can be obtained from: 

-Using different EOS for the hard body system. 
-Using any of the two available choices of a. 
-Using PY [y&, (r,,)] or RHNC [y~~~c(r,2)] to 

obtain yRAM (Y,*), which is present in the integrals of 
A ,, A,, and in the BLIP condition [ Eq. ( 16) 1. 

-Using m.c or 1.c to obtain Al. 
-Using either first or second order perturbation theo- 

ry. 

The equation of state and the residual internal energy U 
can be obtained from the classical formulas 

z= 1+ ygyn* (379 

(389 

where n* = nd stands for the reduced density. Assuming 
that the structure of the reference system is very close to the 
structure of the full potential, we can write the residual inter- 
nal energy as 

U/N= 27771 J (24 exp( -fiuO))xyRAM (r,2942 dr,,. (39) 

Finally, the vapor-liquid equilibria can be studied, 
treating the liquid phase by using perturbation theory and 
the gaseous phase by using the virial series up to the second 
virial coefficient B2 (a good approximation for T/T, < 0.8). 
The density of the liquid pI and of the gas pg coexisting at 
every temperature can be obtained by solving the system of 
nonlinear equations 

PA = (1-k Bzp,)pp (4.09 
A,/NkT + Z, + ln(p, 9 = Bg, + ( 1+ &, 9 + In@, 1. 

(41) 

For T/T, > 0.8 more virial coefficients are needed to 
describe the gas phase. In this range of temperatures it is also 
possible to treat liquid and vapor phase by perturbation 
theory and to determine the equilibrium condition in a Gibbs 
(G,p) diagram as previously reported.” 

III. NUMERlCAL DETAILS 

The theory described in Sec. II needs the evaluation of 
several angular geometrical averages. All these averages 
have been computed by using the method of numerical inte- 
gration proposed by Conroy. Unidimensional integrals 
were calculated by using Simpson’s rule. The evaluation of 
the shortest distance between rods have been described in 
detail elsewhere.31,32 The solution of OZ equation for the 
spherical potential @nAM (r& was carried out by using the 
efficient algorithm proposed by Labik and Malijevsky.33 We 
have used 5 12 points and the grid width was of0.0125 cr. Fast 
Fourier transform was used to carry out conversion between 
real and reciprocal space. When the RHNC closure relation 
was used [ Eq. (33) 1, the Labik and Malijevsky parameteri- 
zation of the bridge function of hard spheres was used.34i3’ 
The solution of the OZ for a given temperature and density 
spends about 15 s (PY) and 60 s (RHNC) in a IBM PS/2 
80-041 with an INTEL 80387 mathematical coprocessor. 
Nevertheless, the calculation of the averages were the most 
time consuming. For instance, the orientational averages for 
5 12 values of r,2 at eight different temperatures were calcu- 
lated in about 6 h with the same computer. The phase dia- 
gram of an angular substance as propane was determined in 
8 h of computer real time. Therefore, the problem falls with- 
in the limits of applications of personal computers. 

In the next section, we shall compare the results ob- 
tained from the theory described in Sec. II with the results 
obtained from molecular dynamics (MD) for a Kihara 
model of propane.” Thus, all the approximations of Sec. II 
are separately checked. 

TABLE II. Compressibility factors of the reference system of a Kihara model of propane (see first line of Table 
IX for the molecular parameters used) as obtained from (Ref. 10) and from the PT of this work by using three 
different EOS. a, which is also given in the last column was obtained from geometrical considerations. PY 
approximation was used to represent yKAM . T* is the reduced temperature i”* = r/(e/k) and n* = nd. 

T* n* z :’ MD z ISI’Tt’ =%u”EnA’ ~,Io”H*.IKd a 

0.5875 0.10 1.73 1.79 1.79 1.79 1.1418 
0.5875 0.15 2.45 2.45 2.44, 2.44 
0.5875 0.20 3.36 3.40 3.36 3.36 
0.5875 0.25 4.65 4.79 4.71 4.71 
0.5875 0.30 6.58 6.87 6.70 6.69 
0.5875 0.35 9.44 10.1 9.74 9.72 
0.5875 0.45 20.86 24.11 22.59 22.4 1.1422 
0.8125 0.10 1.73 1.77 1.77 1.77 1.1436 
0.8125 0.20 3.26 3.29 3.26 3.25 
0.8125 0.25 4.51 4.58 4.52 4.51 
0.8125 0.35 8.95 9.41 9.10 9.07 
0.8125 0.40 12.75 14.01 13.31 13.30 1.1440 

*’ Reference 10. 
’ Reference 18. 
‘Reference 19. 
‘Reference 20. 
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TABLE III. Same as in Table II but o was obtained from the second virial coefficient of the equivalent hard 
system [Eq. (25) ofthe text]. 

T* n* z MD* Z lS1’Tb Z NEZREDAF Z”OCIIILIK’d a 

0.5875 
0.5875 
0.5875 
0.5875 
0.5875 
0.5875 
0.5875 
0.8125 
0.8125 

-0.8125 
0.8125 
0.8125 

0.10 I.73 1.77 1.77 1.77 1.1119 
0.15 2.45 2.41 2.41 2.41 

~- 0.20 3.36 3.33 3.31 3.31 _. 
- 0.25 4.65 4.67 4.62 4.61 

0.30 6.58 6.68 6.56 6.54 
0.35 9.44 9.78 9.52 9.49 
0.45 20.86 23.23 22.08 21.92 - 1.1127 
0.10 1.73 1.75 1.75 1.75 1.1141 
0.20 3.26 3.22 3.20, 3.20 
0.25 4.51 4.47 4.42 4.42 

’ 0.35 8.95 9.12 8.89 8.86 
0.40 12.75 13.54 - 13.06 13.00 1.1148 

“Reference 10. 
b Reference 18. 
‘Reference 19. 
d Reference 20. 

TABLE IV. Same as in Table II usingy,,, as obtained from RHNC approximation. 

T* n* %.ma Z lSPT h Z NE.ZBED.4 ’ ZBO”BLIK ’ a 

0.5875 0.10 1.73 1.79 1.79 1.79 1.1418 
0.5875 0.15 2.45 2.45 2.44 2.44 
0.5875 0.20 3.36 3.40 3.36 3.36 
0.5875 0.25 4.65 4.78 4.70 4.70 
0.5875 0.30 6.58 6.85 6.68 6.67 
0.5875 0.35 9.44 9.93 9.58 9.56 
0.5875 0.45 20.86 23.99 22.48 22.29 1:1424 
0.8125 0.10 1.73 1.77 1.77 1.77 1.1437 
0.8125 0.20 3.26 3.29 3.25 3.25 
0.8125 0.25 4.51 4.55 4.49 4.49 
0.8125 _ 0.35. a.95 9.35 9.04 9.02 
0.8125 .0.40 12.75 ., 13.90 13.27 13.22 1.1442 

‘Reference 10. 
b Reference 18. 
‘Reference 19. 
d Reference 20. 

TABLE V. Same as in Table III but using RHNC equation to represent yKAM. 

T* n* Z ma z b ISI’T Z NCZilEDAe ZLiO”IIm2 a 

0.5875 0.10 1.73 1.77 1.77 1.77 1.1119 
0.5875 0.15 2.45 2.41 2.41 2.41 
0.5875 0.20 3.36 3.33 3.31 3.31 
0.5875 0.25 4.65 4.66 4.61 4.60 
0.5875 0.30 6.58 6.66 6.54 6.53 
0.5875 0.35 9.44 9.62 9.36 9.33 
0.5875 0.45 20.86 23.11 21.98 21.81 1.1129 
0.8125 0.10 1.73 1.75 1.75 1.75 1.1141 
0.8125 0.20 3.26 3.22 3.20 3.20 
0.8125 0.25 4.51 4.45 4.40 4.40 
0.8125 0.35 8.95 9.07 8.84 8.81 
0.8125 0.40 12.75 13.44 12.96 12.90 1.1148 

‘Reference 10. 
“Reference 18. 
’ Reference 19. 
d Reference 20. 
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TABLE VI. Values of the first order perturbation term as obtained from 
MD (Ref. 10) and from PT for the angular model of propane (see first line 
of Table IX for the potential parameters). PY and RHNC were used to 
represent yRAM. The pair interaction was cut at r, to evaluate A, in the 
simulations and in the theoretical results. 

T* n* t-,/u A yD/NkT. A p’/NkT A yHNC/NkT 

0.5875 0.10 5.13 - 1.73 - 1.72 - 1.72 
0.5875 0.15 4.48 - 2.77 - 2.75 -- 2.76 
0.5875 0.20 4.07 - 3.97 - 3.89 - 3.90 
0.5875 0.25 3.78 = 5.28 - 5.12 - 5.13 
0.5875 0.30 3.56 - 6.67 - 6.39 - 6.39 
0.5875 0.35 3.38 -8.11 - 7.70 - 7.66 
0.5875 0.45 3.11 - 10.90 - 10.23 - 10.09 
0.8125 0.10 5.13 - 1.25 - 1.25 - 1.26 
0.8125 0.20 4.07 - 2.88 - 2.83 - 2.84 
0.8125 0.25 3.78 - 3.81 - 3.71 - 3.71 
0.8125 0.35 3.38 =- 5.83 - 5.56 - 5.54 
0.8125 0.40 3.23 - 6.85 .- 6.49 - 6.43 

I I I. ., 
a 0.1 02 0.3 0.6 0.5 

n 

FIG. 2. A, as obtained from MD (dots), PT withy,,, from PY (solid line) 
and PT withy,,, from RHNC (dashed line). 

IV. THEORY VS SIMULATION 

In a previous work” we showed a MD study of a Kihara 
model of propane. We also simulated the reference system 
described by Eqs. ( 8) and (9) and, therefore, we were able to 
evaluate the thermodynamic behavior of this system as well 
as the perturbation terms A, and A,. We shall compare now, 
term by term, the theoretical with the numerical (MD) re- 
sults of the model. 

Let us start with the ditferential counterpart of Eq. ( 17) 
written as 

(dAJ$3, = (JycT), 
which is equivalent to 

(42) 

zo=l+ 
dA,La(n*),v(n*) I/Nk 

dn* 
(43) 

Different possibilities to represent the reference system 
with the basic Eq. (43) arise from using a different EOS, 
from using a different choice of a, or from using yRAM ( ri2) 
as given by either the PY or RHNC approaches. Tables II to 
V show the results obtained from the different variants of the 
theory along with the results obtained from simulation. 
First, we observe that a as given by the second virial coeffi- 
cient is always smaller than a from geometrical consider- 

ations. Similar behavior was found for different nonconvex 
models. r’ Boublik EOS gives the best results and a good de- 
scription of the reference system is achieved when used along 
with either a from geometrical considerations and yEyMc 
(see Table IV) or with a from the second virial coefficient 
and yEM (see Table III). In this work, we shall use this last 
option to describe the reference system because ycIr,,, is easi- 
er to obtain than YE:‘. We should remark that, although 
the RHNC theory is by far superior to the PY theory to 
obtain y,,, (Y&, as was proven for several RAM poten- 
tials,13 the inclusion of RHNC values in the integrand of Eq. 
(30) improves only very slightly the description of the refer- 
ence system. Probably, only when the orientational depen- 
dence of the background correlation function is considered, 
the superiority of RHNC over PY will be manifest. 

Let us now analyze the first order perturbation term A,. 
Table VI and Fig. 2 show the comparison between the theory 
and the pseudoexperimental data. The evident conclusion 
from this table is that although the agreement between theo- 
ry and experiment is good at low densities, neither yExM nor 
yEij!zc are able to reproduce A, at high densities.The theo- 
retical values of A, are systematically less negative than the 
experimental ones at high densities. At high densities the 
values of A, obtained from PY are slightly better than the 
values of A I from RHNC although the differences are always 

TABLE VII. Second order perturbation term as obtained from (Ref. 10) and from the theory for a Kihara 
propane like model (see first line of Table IX for the potential parameters). 

T* n* A ?/NkT A,/NkT” A,/NkT” A,/NkT’ A,/NkT” 

0.5875 0.10 _ 0.285 - 0.287 - 0.357 - 0.288 - 0.353 
0.5875 0.45 - 0.101 - 0.057 - 0.074 - 0.055 - 0.07 1 
0.8125 0.10 - 0.126 - 0.157 - 0.191 - 0.158 - 0.192 
0.8125 0.20 -- 0.145 - 0.147 - 0.202 - 0.148 - 0.203 
0.8125 0.40 .- 0.058 - 0.052 - 0.072 - 0.052 .- 0.069 

“PY and macroscopic compressibility approximation. 
bPY and local compressibility approximation. 
c RHNC and macroscopic compressibility approximation. 
d RHNC and local compressibility approximation. 
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TABLE VIII. Reduced densities at zero pressure for two isotherms of the 
Kihara propane model (first line of Table IX) as obtained from MD (Ref. 
10) and from first order perturbation theory. Boublik EOS equation of state 
along with (r from the second virial coefficient of the hard model were used 
to obtain thermodynamic properties of the reference system. 

T* MD PY EWNC 

0.5875 0.371 0.352 0.345 
0.8125 0.287 0.277 0.273 

small. The main reason for the discrepancies between theory 
and simulation arises from the approximation of Eq. (27). 
Better results cannot be expected as long as the background 
correlation function of the reference system is approached 
by a spherical function. ~Similar conclusions were already 
obtained for a linear model. I3 We conclude that Eq. (27) 
introduces a systematic error in the evaluation of A,, in the 
Kihara potential model of linear as well as angular mole- 
cules. Any improvement of the theory should incorporate 
orientational dependence in the background correlation 
function of the reference system. 

Now let us analyze the second order perturbation term 
A,. Results are shown in Table VII. By comparing the simu- 
lation values of A, and A, at high densities, the fast conver- 
gence of the perturbation expansion is shown. That suggests 
that first order perturbation theory yields good results at 
high densities, but a second order theory is necessary at in- 
termediate densities. Our resultashow that the obtained val- 

for two subcritical isotherms, obtained from theory and 
from simulation. Table VIII shows the results of the model. 
This disagreement comes from the wrong values of A, ob- 
tained at high densities. The contribution of A, to the pres- 
sure is always negative and proportional to the slope ,4, with 
the density (see Fig. 2). As the theoretical slope of A, is 
smaller than the true one (in absolute value) the zero pres- 
sure densities of the theory are smaller than the true ones. 
The zero pressure densities obtained from RHNC are 
smaller than the ones from PY. In any case, the agreement 
between theory and experiment is modest. Because we saw 
that the reference system is correctly described by the theo- 
ry, the origin of the discrepancy is again the wrong values of 
A, at high densities. Keeping in mind that A, is wrong due to 
the fact that the orientational dependence ofy,( y,2,w1,w2) is 
neglected in the theory [see Eq. (27) 1, we can conclude that 
for Kihara fluids the proposed perturbation theory always 
gives smaller densities at zero pressure than it should due to 
the use of Eq. (27). In Fig. 3, we plot the pressure against the 
density for the studied model of propane at two different 
temperatures. We show the theoretical and the MD results. 
PT overestimates the pressure of the model at the two stud- 
ied temperatures, and the deviations increase with the den- 
sity. 

2.0 
ue of A, is slightly sensitive to the choice (PY or RHNC) of 
yRAM (r,*). Macroscopic compressibility approximation 
works better than the local compressibility one. The agree- 1.5 

ment between the theoretical and the experimental values is z 0-l 
only semiquantitative. 1.0 

Once the term by term analysis of the theory has been 
done, let us check the accuracy of the global behavior. For 0.5 
this purpose we shall compare the density at zero pressure 

n* 

FIG. 3. Reduced pressure [p* = p/ (k r/d) ] of the propane model as func- 
tion of the reduced density n* (n* = nd) along two isotherms 
[T* = T/(&/k)]. Dots represent MD results from Ref. 10, the solid line 
represents first order perturbation theory at T* = 0.5875, the dashed line 
represents first order perturbation theory at T* = 0.8125. 

- 
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1.0 1.5 2.0 2.5 3.0 3.5 1 

2.5 

r- b 

FIG. 4. Radial distribution function for the reference system of the Kihara 
model of propane as a function of the center of mass separation ? = r,?/u. 
Dots correspond to MD results for the anisotropic reference system from 
Ref. 10, the solid line corresponds to G L’,, , the dashed line is G EzEc, and 
(crosses) are MC results ofthespherical potential QD,,, . (a) T* = 0.5875 
and n* = 0.20. (b) T* = 0.5875 and n* = 0.41. 

J. Chem. Phys., Vol. 94, No. 1,l January 1991 



C. Vega and S. Lago: IntBraction of angular molecules 

TABLE IX. Potential parameters of the Kihara model of propane (Fig. 1) 
as obtained from MD (Ref. 10) for a given value of L * and from PT for two 
values of L *. 

MD” 
PTI 
PT2 

R /degrees L* U/A e/k 

109.5 0.4123 3.6095 398.5 
109.5 0.4123 3.5587 427. 
109.5 0.460 3.4757 438.2 

‘Reference 10. 

Finally, let us see whether the radial distribution func- 
tion of the reference system is well described by Eqs. (28) 
and (29). For that purpose, a comparison is shown in Fig. 4 
between the MD values of GD(rIz) for the reference system” 
and the values of G,, (Y& as given by PY and RHNC 
solution of the OZ equation for (PRAM (r&. At low densities 
[Fig. 4(a) ] PY and RHNC agree each other and agree with 
the results of the MD very well. This is expected because Eq. 
(28) is exact at zero densities. However, at high densities 
[Fig. 4(b)] neither PY nor RHNC agree with MD results, 
showing that Eq. (28) not only gives wrong orientational 
dependence of go( y,z,wx,wz), but it is not even able to yield 
an accurate estimation of the radial distribution function. 
RHNC describes better the radial distribution function of 
the reference system at small values of Y,*, whereas PY de- 
scribes better the first peak and the behavior at large Y,? We 
also show in Fig. 4 the values of G,,, ( ri2) as obtained from 
Monte Carlo (MC) of the RAM spherical potential (see 
Ref. 13 for details). RHNC agrees perfectly with the MC 
results at low and high densities while PY fails at high densi- 
ties. It is interesting to note that the theoretical values of A, 
(PY or RHNC) are very close to each other and far away 
from the exact MD value (see Table VI) in spite of the fact 
that the structure predicted by these two approaches differs 
considerably at high densities. This indicates that the only 
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FIG. 5. Densities of propane at the coexistence line. The solid line corre- 
sponds to experimental results from Ref. 39 and crosses are the results ob- 
tained from second order PT with the potential parameters PTI ofTable IX 
of this work. 

way to obtain more negative estimates of A, is to give more 
orientational dependence toy,( T,~,w,,w~) and not too much 
can be expected if one continues making spherical approxi- 
mations to yD(~,2,w,,wz). 

V. THEORY VS EXPERIMENT 

In the previous section we have tested the different ap- 
proximations of the theory. We have shown that Eq. (27) 
introduces a severe error which affects the determination of 
A, in an important way. However, as the error is systematic 
there is still the possibility to use potential parameters which 
compensate to some extent these failures. In this way the 
potential parameters somewhat lose their physical meaning, 
but the prediction of experimental properties of real sub- 
stances can be still done in a fast and easy way. This proce- 

I I I I I 

FIG. 6. Logarithm of the vapor pressure of 
propane (in MPa) as a function of the in- 
verse of the temperature (in K). Dots are 
experimental results, the solid line repre- 
sents the theoretical results from second or- 
der perturbation theory with potential pa- 
rameters PTl of Table IX, and the dashed 
line correspond to theoretical values from 
second order perturbation theory with the 
potential parameters PT2 of Table IX. 
These two lines are only distinct at high tem- 
peratures at the scale of the figure. 

oDO2 0.004 0.006 0.008 0.010 0.012 O.OlL 

l/T 
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dure has already been used by Lustig,’ Fischer et aI.,36 and 
Kantor et aI.’ who found the potential parameters of real 
substances by fitting the theoretical predictions to the ex- 
perimental results. In this way the potential parameters 
compensate for the errors which arise from using approxi- 
mate theories. In this section, we shall show that the PT of 
Sec. II applied to the Kihara model is able to reproduce the 
properties of propane within experimental accuracy, as long 
as the parameters of the potential are fitted to experimental 
results. 

In order to determine the potential parameters we shall 
fit the theoretical values of orthobaric density and vapor 
pressure to the experimental ones of propane3’ at a given 

TABLE XI. Second virial coefficient of propane obtained from the param- 
eters of Table IX along with the experimental results (Ref. 41). ‘. 

T/(K) B;“P/(cm”/mol)’ BF*‘/(cm”/mol) B F”*/ (cm”/mol ) 

85.47 . . . , . - 10 526 - 11 542 
130. . . . - 2465 - 2593 
160. . . . - 1435 - 1491 
190. . . . L - 967 - 996 
220. - 763 f 30 - 707 - 724 
250. - 571 k~20 -544 - 555 
280. - 445 f 20 - 433 -441 
310. - 357 f 10 - 353 - 359 

TABLE X. Vapor-liquid equilibrium of propane as obtained from second 
order PT with the parameters of Table IX (PTl and PT2). We also show 
the experimental results from Ref. 38. 

temperature. We choose an intermediate temperature 
between the triple point and 0.8 times the critical tempera- 
ture of propane. All the-calculations of this section were 
done by-using second order PT, the Boublik EOS with a _ 
obtained from B,,{ and yExM. 

Vapor pressures 
T/(K) p’““/(MPa, pfl’/(MPa) p”T2/(MPa) 

85.47 1.69 10-9-’ 9.27 10 - ‘O 9.15 fO- ‘O 
130. 1.75 lo-$ 3.25 lo-’ 3.27 10 -’ 

160. 8.47 1O-4 1.13 1o-3 1.14 lo-’ 
190. 1.05 1o-2 1.15 lb-2 1.17 10-Z 
220. 6.05 10 - ’ 5.98 lo-’ 6.10 10 ’ 
250. 0.218 0.189 0.206 
280. 0.582 0.516 0.529 .; 
310. 1.27 1.10 0.914 :. I -* 

Orthobaric densities .f 
T/(K) n’“~/(moVO n”T’/(mol/() neTz/(moljFj .- 

85.47 16.63 16.86 1: 16.97 
130. 15.60 15.62 15.68 
160. 14.91 14.86 14.92 .~~ 

~- 190. 14.20 14.14 14.19 
220. 13.46 13.43 13.46 
250. 12.66 12.70 12.71 
280. 11.77 11.94 11.93 
3 10. 10.72 11.13 11.03 

The value of the internal angle of the angular model was 
fixed to 109.5 deg. Two values of the reduced length of the 
rod L * = i/a with 1 being the length of the rod were consid- 
ered L * = 0.4123 and L * = 0.46. In Table IX the obtained 
parameters with the theory are shown along with the param- 
eters obtained,from MD” for L * = 0.4123 using the fitting 
procedure of Ref. 39. We observe that for L * = 0.4123 MD 
parameters are not coincident with those of PT. In fact, PT 
gets a slightly smaller molecular voiume (smaller value of a) 
and increases the value of i/k, Thus the errors of the theory 
affects 2% to (T and 7% to ~/ik.‘Tbe. variation with L * of the 
theoretical o tends to keep constant the molecular volume. 
The theoretical dk increases with L *. 

Dew densities 
T/(K) rF/(mol/~ n”T’/(mol/n P2/( mol/o 

85.47 2.38~ lo- ” 1.30x10-’ 1.29x lo-’ 
130. 1.62X 1O-5 3.01x10-5 3.03x 10-s 
160. 6.37x10-. 8.48~ 10. 4 8.59x10-’ 
190. 6.70x10-’ 7.36x10-” 7.44x 10 ’ 
220. 3.39x 10: 2 3.35x10-2 3.42~ lo-’ 
250. 0.112 9.11x1o’z 0.105 
280. 0.289 0.249 0.256 
310. 0.635 0.525 0.355 

In Fig. 5 we represent the vapor-liquid equilibrium of 
propane. The agreement in the coexistence densities is excel- 
lent. In.Fig. 6 the vapor pressure is plotted at different tem- 
peratures. The agreement is very good at intermediate tern- 
peratures and slightly deteriorates at low temperatures. 
Table X gives a more detailed panorama of the vapor-liquid 
equilibria of propane. Table X also shows the calculated en- 
thalpy of vaporization H,, at several temperatures along with 
the experimental results. 38 The deviations in H, go from 8% 
at the lowest temperature to 2% at the highest. Finally, in 
Table XI we compare theoretical and experimental values of 
B2 for propane. 4o The agreement is also good. Thus, we see 
from our results that the vapor-liquid equilibria of an angu- 
lar, nonpolar molecule as propane can be well described by 
the proposed PT when the potential parameters are obtained 
by fitting the theoretical to the experimental results. 

VI. CONCLUSIONS 
Enthalpy of vaporization ,=. 

T/(K) Hyr/(KJ/mol) H!?“/(KJ/mol) H rT’/(KJ/mol) 

110 24.17 22.26 22.32 
130 22.96 21.16 21.21 
160 21.70 20.15 20.23 
190 20.52 19.19 19.26 
220 19.26 18.18 18.23 
250 17.82 17.06 17.05 
280 16.07 15.70 15.65 
310 13.76 14.06 13.95 

In a previous work” we show that the simulation by 
MD of angular Kihara fluids is easy to carry out. Further- 
more, we show that the Kihara model can compete as effec- 
tive pair potential with the site-site model for angular, non- 
polar substances as propane; Moreover, the WCA-like 
division of the pair potential can be easily done for this model 
and, therefore, the simulation of the reference system is real- 
ly feasible while it is very difficult for a site-site model. Simu- 
lations of the reference system indeed were carried out, al- 
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lowing the evaluation during the runs of the different pertur- 
bation terms. i. 

In this work we have carried’ out an extension of the 
perturbation scheme proposed by Fischer, to Kihara angu- 
lar models. Furthermore, a systematic study of the different 
approximations of the theory has been made by comparing 
the pseudoexperimental MD results with the theoretical 
ones. This study revealed that the reference system is well 
described by Boublik EOS with a obtained from B,,,. Never- 
theless, the main shortcoming of the PT is to neglect the 
orientational dependence of ya( r,2,w1,w2) [Eq. (27) 1. Al- 
though this approximation is good at low densities, it fails at 
high densities giving theoretical estimates of A, less negative 
than they should be. Therefore, the pressure is over predict- 
ed at high densities. Not too much can be won by using the 
accurate J#:$~:“( r,*) [when compared with MC structural 
results corresponding to the @aaM ( Y,~) ] instead of the ap- 
proximate J$& (Y,~). Only with incorporating more orien- 
tational dependence on y,(r,,,w,,w,) can a better descrip- 
tion of A, can be expected. Efforts to improve the theory 
should address this point. First order PT should be enough 
at high densities but, at low and medium densities second 
order PT should be used. The macroscopic compressibility 
approximation serves reasonably well to estimate A,. 

We have also shown that the potential parameters ob- 
tained from an approximate theory can differ from the pa- 
rameters obtained from a simulation study as MD. In this 
way the potential parameters obtained from the theory com- 
pensate to some extent the errors of the theory. Thus, a good 
description of real propane is achieved with the proposed PT 
when the potential parameters are obtained by fitting theo- 
retical to experimental results. The agreement was similar to 
the one obtained by PT and the site-site model.4 

We believe that the Kihara model can be used to model 
the pair interaction of small nonpolar molecules (linear and 
nonlinear), either by simulation studies (see Ref. 10) or by 
PT, as we showed in this work. The difficulties to carry out 
such studies are not greater than with the site-site model. 
Moreover, systematic improvement of the theory can be 
achieved because the simulation of the WCA-like reference 
system is easy to carry out whereas this is not true for the 
site-site model. 
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APPENDIX 
In this Appendix we shall give the basic formulas to 

evaluate R,, S,, and V, for a hard molecule made up by 
two identical, fused hard spherocylinders as shown in Fig. 1. 
We shall call il the internal angle between the rods and we 
shall consider only models with ;1>?r/2 and 
L * = I/o> OS/tg(il/2);ForR, weshalltake themeanra- 
dius of curvature of the parallel body of width o/2 to the 

triangle made up by the two rods. Then R, is given by4’ 

R,=+T+;, 

where 1 is the average length of the side of the triangle 

‘?= (4 + 12 + 4) 
3 ’ 

- 042) 

I,, &, and 1s denoting the length of the sides of the triangle. 
To evaluate the surfaceS, and the volume V,, we write 

them as 

X,=X, +&-X12, (A31 
where X, stands for the value of property X for spherocy- 
linder i and X, stands for the value of the property in the 
region common to spherocylinders i andj with X = S, V. The 
values of Si and Vi are trivial and are given by 

si =%-GJ(1 + L*> (A4) 

(A51 

To evaluate X, we shall divide the common region into 
two parts, a spherical sector (labeled II in Fig. 1) and a 
cylindrical one (labeled III in Fig. 1) . The contribution of 
sector II to X, is trivial and is given by 

s; =cJq%-+A)/2 (A61 

v; = d(rr + R)/12. (A7) 
The contribution of sector III to Xi/ can be evaluated 

from integration to yield 

$/!I= n-2 
4 tgcil/21 

(‘48) 

vyr = $ cotg(A /2) . (A91 

Equations (A 1) to (A9 ) allow to evaluate a from geometri- 
cal considerations for the studied model very easily. 
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