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A simple model for a chiral molecule is proposed. The model consists of a central atom
bonded to four di� erent atoms in tetrahedral coordination. Two di� erent potentials were
used to describe the pair potentials between atoms: the hard sphere potential and the
Lennard-Jones potential. For both the hard sphere and the Lennard-Jones chiral models,
computer simulations have been performed for the pure enantiomers and also for the racemic
mixture. The racemic mixture consisted of an equimolar mixture of the two optically active
enantiomers. It is found that the equations of state are the same, within statistical uncertainty,
for the pure enantiomer ¯uid and for the racemic mixture. Only at high pressures does the
racemic mixture seem to have a higher density, for a given pressure, than the pure enantiomer.
Concering the structure, no di� erence is found in the site±site correlation functions between
like and unlike molecules in the racemic mixture either at low or at high densities. However,
small di� erences are found for the site±site correlations of the pure enantiomer and those
of the racemic mixtures. In the Lennard-Jones model, similar conclusions are drawn. The
extension of Wertheim’s ®rst-order perturbation theory, denoted bonded hard sphere theory
(Archer, A. L., and Jackson, G., 1991, Molec. Phys., 73, 881; Amos, M. D., and Jackson,
G., 1992, J. chem. Phys., 96, 4604), successfully reproduces the simulation results for the
hard chiral model. Virial coe� cients of the hard chiral model up to the fourth have also
been evaluated. Again, no di� erences are found between virial coe� cients of the pure ¯uid
and of the racemic mixture. All the results of this work illustrate the quasi-ideal behaviour of
racemic mixtures in the ¯uid phase.

1. Introduction
The study of molecular ¯uids and their mixtures has

been one of the central topics in statistical thermody-
namics over the last 30 years. The in¯uential book of
Gray and Gubbins [1] has been an invaluable reference
to anyone interested in applying the methods of statis-
tical thermodynamics to molecular systems. Their work
on spherical and linear molecules, with or without a
multipole, has proved to be an obligatory reference to
any one interested in the behaviour of bulk [2±4] mol-
ecular ¯uids. In the late 1980s, Gubbins along with
Chapman and Jackson [5, 6] illustrated the enormous
potential for practical applications hidden in
Wertheim’s theory of association, and how this theory
could be applied successfully to chains [7±9].

This paper is devoted to a special type of molecular
¯uid that has received little attention: the ¯uid behav-
iour of simple chiral models. Molecules lacking an inver-
sion-rotation axis (i.e. Si axis) exhibit optical activity

[10]. Molecules lacking an Si axis cannot be superposed

on their specular image. For common organic molecules
the absence of an Si is associated with the presence of a

chiral carbon centre (i.e. a C atom bonded to four dif-

ferent substituents) [11]. When only one chiral carbon

centre exists then there are two di� erent optical isomers
(also known as enantiomers). These two di� erent enan-

tiomers are usually denoted as R and S [11] (although

when dealing with amino acids the notation l and d
tends to be used [12]). The two enantiomers exhibit

identical physical properties (critical point, viscosity),

the only di� erence being the direction of the rotation

of the plane of polarized light.
A racemic mixture consists of an equimolar mixture

of the R and S isomers, which results in the lack of

optical activity. Quite often (but not always) chemical
synthesis leads to the formation of a racemic mixture.

An interesting question is the determination of the

mixing (excess) properties of mixtures of chiral mol-

ecules. If we mix the pure R enantiomer, with the pure
S enantiomer then one may measure the excess volume

and the excess enthalpy. The number of experimental
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studies on the excess properties of chiral molecules is

limited [13±17]. Certainly these kinds of study are

quite di� cult since the excess properties of enantiomeric

mixtures are quite small [18, 19]. However, there are

several studies where these excess properties have been
measured experimentally. An open question is the pres-

ence of l amino acids in all biological samples (and the

absence of d amino acids). It is not clear why all forms

of life on earth are using l amino acids instead of the d

form [12]. The behaviour of racemic mixtures in the
solid phase is also quite interesting [18, 19], since they

show rich behaviour: namely, they form solid solutions,

racemic compounds (a solid compound of stoichiometry

1:1 is formed in the solid phase), and conglomerates (i.e.
separation of R and S crystals by the formation of a

eutectic). The classic paper of Pasteur [20] illustrates

the formation of conglomerates.

Theoretically, racemic mixtures have received very
little attention. Kenney and Deiters [21] studied racemic

mixtures from a thermodynamic and molecular point of

view, and Vatamanu and Cann [22] performed a theor-

etical study via an integral equation of the structural

properties of racemic mixtures. Vlot et al. [23] per-
formed computer simulations of a racemic mixture

(although the model used is somewhat questionable,

since they used the Lennard-Jones (LJ) potential for

the R and S molecules and described the R±S interaction
by a di� erent LJ interaction). Other aspects of chiral

compounds have been reviewed [24]. These recent

papers prompted us to study simple models of chiral

compounds.

It is well known that repulsive forces dominate the
structure of ¯uids at high densities [25, 26]. Moreover

there are a number of theoretical methods for describing

mixtures of hard bodies [27]. Therefore the study, via

computer simulation, of a mixture of hard bodies with

chiral properties is an interesting problem. In this paper
we present NpT Monte Carlo simulations of a simple

model (methane-like) of a chiral molecule. One of the

simplest conceivable models of a chiral molecule is a

molecule with a central atom and four di� erent atoms

in tetrahedral coordination (although four di� erent
atoms would be su� cient for chirality to exist [22]).

This model mimics the geometry of a derivative of

methane. The model presents two di� erent optical iso-

mers, namely the R and the S. Simulations were per-
formed for one of the pure enantiomers and for the

racemic mixture, with the aim of determining whether

there are di� erences in the equations of state and struc-

tural properties between the two. In order to analyse the
behaviour at low densities, the values of the second,

third, and fourth virial coe� cients of the pure enan-

tiomer and of the racemic mixture were calculated and

are reported here. The e� ect of introducing attractive
forces in the model is also analysed.

2. Model and computationa l details
2.1. A primitive model of a chiral hard molecule

It is well known that derivates of methane with four
di� erent substituents atoms are chiral (e.g. CHFClBr).
By chiral we mean that the molecule cannot be super-
posed with its mirror image. Inspired by this fact we
shall propose a simple model which we shall denote
the hard primitive model (HPM) of a hard chiral mol-
ecule. The model consists of a central hard sphere, with
a diameter of 1, and four hard spheres, all of them
tangent to the former, with diameters given by 0.9,
0.8, 0.7, 0.6, placed in a tetrahedral coordination (with
a bonding angle of 109.58 between the central atom and
any pair of smaller atoms). The model de®ned in this
way is chiral. The two di� erent optical isomers are
denoted as R and S. We shall follow the chemical cri-
terion for the labelling of the R and S enantiomers,
according to which the four atoms surrounding the cen-
tral atom are labelled from the heaviest (1) to the lightest
(4). We assume here that the molecular mass of each
atom is proportional to its diameter (®gure 1 (a)). The
central atom is located in the plane of the paper and the
lightest one is located perpendicular to the plane of the
paper moving away from the viewer. If the rotation
from atom 1 to 2, and from 2 to 3 is clockwise, the
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Figure 1. (a) Hard primitive model (HPM) of chiral molecule
used in this work. (b) Tetrahedral model of Sear et al. [54].



enantiomer is denoted as R, and if it is counterclockwise
then the enantiomer is denoted as S [11]. The coordi-
nates of the centre of the ®ve hard spheres forming the S
and R enantiomers are presented in tables 1 and 2, re-
spectively. The atoms are labelled from 1 to 5, starting
with the central atom (atom 1), atom 2 having diameter
0.9, atom 3 having diameter 0.8, atom 4 having diameter
0.7, and atom 5 having diameter 0.6. The model is rigid
in the sense that bond lengths and angles are ®xed. All
intermolecular interactions between pairs of atoms are
hard sphere interactions.

Because the thermodynamic properties of a pure ¯uid
with molecules of type R are identical to those of a pure
¯uid with molecules of type S we shall study the proper-
ties of only the pure R ¯uid, in addition to the racemic
mixture. By contrast, the thermodynamic properties of a
racemic mixture are not necessarily identical to those of
the pure R and S ¯uids. In fact the excess properties of
racemic mixtures have been measured experimentally.
However, the excess properties of racemic mixtures
tend to be quite small, so that these types of mixtures
are a good example of quasi-ideal mixtures [13±19].

We should mention an issue that is of relevance when
studying racemic mixtures. In principle, enantiomer R
can be converted into enantiomer S according to the
reaction:

R „ S: …1†

Therefore, since interconversion between the two types
of molecule is possible they must be in chemical equi-
librium. When simulating racemic mixtures one should

consider the possibility of trial moves that change the

chemical identity of the molecule. That will guarantee
that the system is in chemical equilibrium. Therefore,
rigorously, for a mixture of enantiomers R and S, com-
position is not an independent variable, since for a cer-
tain temperature and pressure the composition of the
system is given by the condition of chemical equilibrium
between the two species. One can buy from a chemical

company a bottle with the pure R enantiomer and store
this product as pure R for years. The reason is kinetics.
The interconversion of R into S may have a very large
energetic barrier, so that it may occur at practically zero
rate at room temperature (although the presence of
acids or other substances may signi®cantly decrease
the height of the barrier). If the energetic barrier for

the interconversion between R and S species is high,
then one can disregard the chemical reaction illustrated
by equation (1), and treat components R and S as two
independent substances. In that case, for a given tem-
perature and pressure, one must also specify the compo-
sition of the system (for instance the molar fraction of

isomer R). In fact it is possible to prepare mixtures of
isomers R and S with arbitrary composition by mixing
the pure R and S at will, provided that the energetic
barrier for interconversion is large. Rigorously
speaking, to measure excess properties in mixtures
of enantiomers, one requires that the reaction of
equation (1) does not take place (so that the properties

of the pure R and S isomers can be determined experi-
mentally). This is usually (but not always) the case,
since the interconversion of R into S requires the
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Table 1. Coordinates of the atoms in enantiomer S of the primitive model. The diameter of the central atom is
taken as the unit of length. ¼ii denotes the diameter of atom i. l1i denotes the bond length between the central
atom (atom 1) and atom i.

Atom ¼ii x y z l1i

1 1.0 0.0 0.0 0.0 0.0

2 0.9 0.548 482 76 0.548 842 76 0.548 482 76 0.95
3 0.8 70.519 615 24 70.519 615 24 0.519 615 24 0.90

4 0.7 70.490 747 73 0.490 747 73 70.490 747 73 0.85

5 0.6 0.461 880 22 70.461 880 22 70.461 880 22 0.80

Table 2. Coordinates of the atoms in enantiomer R of the primitive model. The diameter of the central atom is
taken as the unit of length. ¼ii denotes the diameter of atom i. l1i denotes the bond length between the central
atom (atom 1) and atom i.

Atom ¼ii x y z l1i

1 1.0 0.0 0.0 0.0 0.0
2 0.9 0.548 482 76 0.548 842 76 0.548 482 76 0.95

3 0.8 70.519 615 24 70.519 615 24 0.519 615 24 0.90

4 0.7 0.490 747 73 70.490 747 73 70.490 747 73 0.85
5 0.6 70.461 880 22 0.461 880 22 70.461 880 22 0.80



breaking of bonds and usually this is a process with a
high activation energy.

Therefore, we shall not include in the present study
the possibility of chemical conversion between the iso-
mers (the reaction illustrated by equation (1)). As a
consequence, in our simulations the numbers of mol-
ecules of type R and S will be ®xed, and no attempt
will be made to change it during the run. We shall
treat the two optical isomers as the two independent
components of an ordinary mixture, so that for a
given temperature and pressure we need also to specify
the composition of the system.

A racemic mixture where the reaction given by equa-
tion (1) is not included and/or considered will be
denoted a non-reactive racemic mixture. A system of
chiral molecules, where the reaction given by equation
(1) is considered will be denoted a reactive chiral system.
Thus, in this paper we shall focus on non-reactive mix-
tures of chiral compounds.

Non-reactive mixtures of chiral compounds share a
number of similarities with Lennard-Jones symmetric
mixtures, which consist of mixtures of spherical LJ mol-
ecules, where interactions between particles of type A,
and interactions between particles of type B are iden-
tical, but the A±B interaction di� ers from the A±A inter-
action. These kinds of mixture have been studied in
detail by Fan et al. [28], de Miguel et al. [29] and Vlot
et al. [23].

In addition to the hard primitive model we shall also
consider a system with attractive forces. This model will
be denoted the Lennard-Jones primitive model (LJPM).
The LJPM is identical to the HPM. Bond lengths,
angles, and the location of the interaction sites are coin-
cident with those of the HPM. The only di� erence is
that the hard interaction is replaced by a Lennard-
Jones interaction given by

Uij ˆ 4"ij
¼ij

rij

³ ´12

¡
¼ij

rij

³ ´6
Á !

: …2†

We shall use Lorentz±Berthelot [30] rules for cross
interactions so that ¼ij and "ij are given by

¼ij ˆ
¼ii ‡ ¼jj

2
; …3†

"ij ˆ ‰"ii"jjŠ1=2: …4†

The choice for ¼ii and "ii is as follows. For ¼ii we shall
choose the same values as for the hard sphere model, so
that ¼11 ˆ 1, ¼22 ˆ 0:9, ¼33 ˆ 0:8, ¼44 ˆ 0:7, ¼55 ˆ 0:6.
For "ii we shall use the simple prescription "ii ˆ ¼ii
(apart from units).

Now we shall present the details of the computer
simulations performed in this work.

2.2. Computer simulations details

To study the racemic mixtures and the optically active

pure components we performed Monte Carlo simula-

tions in the NpT ensemble [31]. We used 256 molecules,

and our runs typically consisted of 120 000 cycles for

equilibration followed by 120 000 cycles to determine

ensemble averages. A cycle consisted of a trial move
per particle, plus a trial volume change for the system.

The trial move of a particle was selected with equal

probability to be a translation move or a rotation

move. In the rotational move a direction is selected

randomly and the molecule is rotated by a random

angle around the chosen direction. Acceptance probabil-

ities for translation, rotation or volume changes were
kept around 40%. Simulations started at low densities

(pressures), by locating the molecules on a a-N2 cubic

lattice structure. This structure spontaneously melted at

low pressures. Then we gradually increased the pressure

and proceeded to obtain the equation of state (EOS) via

compression runs. We used the ®nal con®guration of a

certain run as the initial con®guration for the next run.
Our simulation box was cubic, and volume changes were

performed isotropically so that the simulation box

remained cubic through all the runs. In the case of the

hard primitive model, two independent runs were per-

formed both for the pure R isomer and for the racemic

mixture. The results presented here for the HPM corre-
spond to the average of the results of two independent

runs. Since the system consists of hard interactions, tem-

perature is not a relevant variable. Pressures and densi-

ties will be given in reduced units:

p¤ ˆ p=…kT =¼3
11†; …5†

»¤ ˆ »¼3
11; …6†

where ¼11 is the diameter of the central atom, p is the

pressure and » ˆ N=V is the number density of the

systems (number of molecules per unit volume). For a

certain reduced pressure the output of the simulation is

the reduced density.

In addition to the EOS, we computed also the site±site

pair correlation functions between sites. The site±site
correlation functions are denoted as gAB

ij where i; j 2 1,

2, 3, 4, 5 and A; B 2 R; S. For instance gRR
11 denotes the

site±site correlation function between site 1 of molecule

of type R and site 1 of a molecule of type R. Similarly,

gRS
11 denotes the site±site correlation function between

site 1 of molecule R and site 1 of molecule S. The

number assigned to each of the atoms of the molecule
is presented in tables 1 and 2. For determining gAB

ij we

used NVT simulations. The site±site correlation func-

tion is calculated in the NVT ensemble as [32]
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gRS
ij …r† ˆ f

hNRS
ij …r†i

NR»SV …r† ; …7†

gRR
ij …r† ˆ f

hNRR
ij …r†i

NR»RV …r† ; …8†

where V …r† is the volume of the spherical cell with r
between r ¡ dr=2 and r ‡ dr=2, NA is the number of
particles of type A, »B is the number density of mol-
ecules of type B, hNAB

ij …r†i is the average number of
pairs of sites of type i for molecule A, and j for molecule
B, with distances between r ¡ dr=2 and r ‡ dr=2. The
factor f is two when A ˆ B and one when A 6ˆ B. In
this work (unless other choice is indicated) we used
dr ˆ 0:02¼11. Note that at large distances the site±site
correlation function in the NVT ensemble goes to one
for gAB

ij (with A di� erent from B), but goes to 1 ¡ 1=NA

for gAA
ij . We checked our subroutines for the evaluation

of gij by comparing the results of our program with
those of a number of mixtures of hard bodies, obtaining
good agreement in all cases [33].

In addition to the simulations for the HPM we also
performed simulations for the LJPM, and the details are
totally analogous to those described previously. The
values of the central atom, 1, were used for obtaining
reduced units. For the LJPM, the reduced density, press-
ure, temperature and energy are given by

»¤ ˆ »¼3
11; …9†

p¤ ˆ p=…kT =¼3
11†; …10†

T ¤ ˆ T =…"11=k†; …11†

U¤ ˆ U=…N"11†: …12†

All simulations of the LJPM were performed at the
reduced temperature T ¤ ˆ 4. Clearly this temperature is
above the critical temperature of the pure enantiomers.
By choosing this rather high temperature we avoid the
complication of the appearance of vapour±liquid phase
separation in the system. In the simulations of the
LJPM, each site±site interaction was truncated (but
not shifted) at rc=¼11 ˆ 3. Therefore all site±site inter-
actions are truncated at the same distance. A long range
correction to the energy was added assuming gij ˆ 1
beyond the cuto� value. Therefore the total value of
the long range correction to the internal energy is
given by

Ulrc

N
ˆ »

2

X

A

X

B

xAxB

X

i 2 A

X

j 2 B

"ij16p
¼3

ij

3

1

3

¼ij

rc

³ ´9

¡
¼ij

rc

³ ´3
Á !

;

…13†

where xA is the mole fraction of enantiomer A, xB is the
mole fraction of enantiomer B, i denotes the sites of
enantiomer A, and j denotes the sites of enantiomer B.

Note that the long range correction is density depen-

dent. Therefore the long range correction must be

included within the Markov chain of the NpT simula-

tions (i.e. when attempting a volume change the long

range correction must be included for the actual density
and for the trial density, and this change of energy must

be included within the acceptance criterion). Simulations

of the LJPM are considerably more time consuming

than those of the HPM. Therefore, only one run was

performed for the pure R ¯uid and for the racemic
mixture.

Before ®nishing we should mention an aspect of the

simulations to be considered when studying racemic

mixtures. The mixing of components R and S within
the mixture must be good. By good mixing we mean

that components R and S should be homogeneously

distributed within the simulation box. Otherwise

wrong results and conclusions (thermodynamic and
structural) can be obtained from the simulations. To

obtain good mixing two actions were taken. The ®rst

is that in the intial low density con®guration the R

and S molecules are distributed homogeneously within

the solid a±N2 solid structure. The second is that in
addition to the usual translation and rotation moves, a

new type of Monte Carlo move is included within the

simulations. We denote this move the exchange move

[34]. In an exchange move an R and an S molecule is
each selected randomly within the mixture. Then the

positions of the two molecules are exchanged. The

exchange move is used only to achieve good mixing,

especially at high densities, but this move does not

change the composition, and therefore does not account
for the chemical reaction represented by equation (1).

To include equation (1) within the simulations, one

should randomly select one, and only one, molecule

(either R and S) and change its chemical identity

(from R to S or from S to R). This is equivalent to
regarding the two enantiomers R and S as two di� erent

states of the same type of molecule, and the change of

identity corresponds to the sampling of an `internal’

degree of freedom. Note that in this case the number

of R or S molecules is not conserved during the simula-
tion run. This is one way to include the reaction given by

equation (1) within the simulations. However, this has

not been done in the present work. As mentioned above,

we shall assume that there is a large energy barrier
between isomers R and S, so that there is no mutual

conversion, and we can regard the mixture as a standard

mixture of two di� erent components (for example Ar

and N2). The exchange move included within the runs
was chosen in order to achieve mixing, and not to

account for the possibility of a chemical reaction like

that given by equation (1).

Computer simulation of racemic mixtures 2401



When choosing a trial move for a molecule in the
racemic mixture we may select translation, rotation
and exchange moves, with probabilities of 0.4, 0.4 and
0.2, respectively. Typical acceptance ratios for exchange
moves ranged from almost 100% at very low densities to
0.3% at the highest densities considered. These accep-
tance ratios are su� cient to guarantee good mixing of
the R and S enantiomers.

2.3. Virial coe� cients for the hard model
At low densities the compressibilty factor can be

expanded in powers of the density:

Z ˆ p
»kT

ˆ 1 ‡ B2» ‡ B3»2 ‡ B4»3 ‡ ¢ ¢ ¢ : …14†

For a hard model one can de®ne the volume fraction y
as

y ˆ »V m; …15†

where V M is the molecular volume. For the HPM the
molecular volume is given by

V m ˆ p
6

¼3
11…1 ‡ 0:93 ‡ 0:83 ‡ 0:73 ‡ 0:63† ˆ 1:466 08:

…16†

The virial expansion can be written as:

Z ˆ p
»kT

ˆ 1 ‡ B¤
2y ‡ B¤

3y2 ‡ B¤
4y

3 ‡ ¢ ¢ ¢ ; …17†

where the reduced virial coe� cients B¤
i are de®ned as

B¤
i ˆ Bi=V …i¡1†

m . For a binary system, for example that
of the racemic mixture,the reduced virial coe� cients can
be expressed as

B¤
2 ˆ

X

A

X

B

xAxBB¤
AB; …18†

B¤
3 ˆ

X

A

X

B

X

C

xAxBxCB¤
ABC; …19†

B¤
4 ˆ

X

A

X

B

X

C

X

C

xAxBxCxDB¤
ABCD; …20†

where xA denotes the molar fraction of component A,
and the capital letters A, B, C, D may adopt any of the
two values R for the R enantiomer, or S for the S
enantiomer. Therefore, the second virial coe� cient B¤

2

can be determined if B¤
RR, B¤

SS, and B¤
RS are known. By

symmetry it must hold that B¤
RR ˆ B¤

SS. However, B¤
RS is

not necessarily identical to B¤
RR. Similarly, to obtain the

third virial coe� cient B¤
3, the coe� cients B¤

RRR, B¤
RRS,

B¤
RSS, and B¤

SSS must be determined. By symmetry con-
siderations it must hold that B¤

RRR ˆ B¤
SSS and

B¤
RRS ˆ B¤

SSR. In principle, B¤
RRR and B¤

RRS are not
equal. For the fourth virial coe� cient, one must deter-
mine B¤

RRRR ˆ B¤
SSSS, B¤

RRRS ˆ B¤
SSSR, and B¤

RRSS ˆ
B¤

SSRR, so there are only three di� erent independent

contributions. Therefore, to determine B2, B3 and B4

for the mixture one must ®rst compute BRR, BRS,
BRRR, BRRS, RRRRR, BRRRS and BRRSS. To determine
those coe� cients we used the method proposed by Ree
and Hoover [35], as extended to non-spherical systems
by Rigby [36]. The procedure and graphs that must be
evaluated in order to determine those coe� cients have
been described in detail in [37, 38]. We used ®ve inde-
pendent determinations to compute these virial coe� -
cients, and the results reported here are the average of
these ®ve independent determinations. In each determi-
nation we used Norien ˆ 100 000 and Nchemical ˆ 2000;
where the meanings of the parameters Norien and
Nchemical were given in [37].

2.4. Bonded hard sphere theory for the hard primitive
model of a chiral molecule

In addition to the virial calculations and the computer
simulations described above we have determined the
EOS of the HPM theoretically using the bonded hard
sphere implementation of Wertheim’s theory [5, 39±43]
as proposed by Archer, Amos and Jackson [44±46]. This
theory is quite suitable for describing the EOS of a
system formed by tangent hard spheres. Therefore, it
can be used for describing the HPM model proposed
in this work. We shall describe the implementation of
the BHS for a pure ¯uid (say the R enantiomer). The
bonded hard sphere model starts from the reference
system of unassociated sites and evaluates the e� ect of
bonding on the EOS. The EOS of the BHS for the HPM
model is given by

Z ˆ 5Zhs ¡
X

bonds

1 ‡ »

ghs
ij …¼ij†

@ghs
ij …¼ij†
@»

Á !

TN

" #

; …21†

where the factor 5 is due to the fact that the molecule
(say enantiomer R) breaks into ®ve di� erent monomers.
The sum in equation (21) runs over all bonds formed in
the molecule. For the R enantiomer, the bonds of the
molecule are those formed between sites 1±2, 1±3, 1±4
and 1±5. The compressibility factor of the reference
system of unbonded hard spheres Zhs is described by
the Boublik±Mansoori±Carnahan±Starling±Leland EOS
[47, 48], which is given by

Zhs ˆ 6

p»

±0

1 ¡ ±3

‡ 3±1±2

…1 ¡ ±3†2
‡ 3±3

2

…1 ¡ ±3†3
¡ ±3±

3
2

…1 ¡ ±3†3

" #

;

…22†

where the variable ±l is de®ned as

±l ˆ p»

6

X

i

xi¼
l
ii

µ ¶
; …23†
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with xi the molar fraction of atoms of type i in the
unbounded mixture. The contact value for the pair
correlation function between sites in the reference un-
bonded system and its derivative (with respect to the
total number of monomers) are given by [46, 47]

ghs
ij …¼ij† ˆ 1

1 ¡ ±3

‡ 3
¼i¼j

¼i ‡ ¼j

³ ´
±2

…1 ¡ ±3†2

‡ 2
¼i¼j

¼i ‡ ¼j

³ ´2
±2

2

…1 ¡ ±3†3
; …24†

»
@ghs

ij …¼ij†
@»

Á !

TN

ˆ ±3

…1 ¡ ±3†2
‡ 3

¼i¼j

¼i ‡ ¼j

³ ´
±2…1 ‡ ±3†
…1 ¡ ±3†3

‡ 2
¼i¼j

¼i ‡ ¼j

³ ´2±2
2…2 ‡ ±3†
…1 ¡ ±3†4

; …25†

where ¼ij ˆ …¼ii ‡ ¼jj†=2.
According to the BHS the equation of state for pure R

is identical to that of the pure S enantiomer (as it should
be). The BHS has been extended to mixtures, and the
details are given in [46]. In the particular case of racemic
mixtures, it turns out that the diameters of the sites and
the types of contact are identical for the R and S iso-
mers. Therefore, BHS theory predicts the same EOS for
the pure components and for the racemic mixture. This
is an important and interesting result. It means that
according to the BHS the excess volume of a racemic
mixture is zero.

2.5. Wertheim’s theory for the Lennard-Jones primitive
model of a chiral molecule

According to Wertheim’s ®rst-order perturbation
theory (TPT1) the residual free energy, compressibility
factor and residual internal energy of the pure R enan-
tiomer are given by [9, 49]

Ares

NkT
ˆ 5

Amix
res

NmonokT
¡

X5

jˆ2

ln y1j…¼1j†; …26†

Z ˆ 5Zmix ¡
X5

jˆ2

1 ‡ »
@

@»
ln y1j…¼1j†

µ ¶
; …27†

Ures

NkT
ˆ 5

Umix
res

NmonokT
‡

X5

jˆ2

T
@

@T
ln y1j…¼1j†

µ ¶
; …28†

where the superscript mix denotes properties of the
reference system of unbonded monomers and yij is the
background correlation function of the mixture of
unbonded monomers. The number of unbonded mono-

mers is (obviously) 5N. There is no distinction between
yij…¼ij† and gij…¼ij†, since the LJ pair potential vanishes
when rij ˆ ¼ij.

The properties of the reference system of LJ
unbonded monomers are unknown. At this point we
shall use the one-¯uid approximation which, as illu-
strated by Blas and Vega [49], yields quite good results
for heteronuclear LJ chains. In the one-¯uid theory the
parameters "x and ¼x of the equivalent LJ one-¯uid
system are de®ned as [50]

¼3
x ˆ

X

i

X

j

xixj¼
3
ij; …29†

"x¼3
x ˆ

X

i

X

j

xixj¼
3
ij"ij ; …30†

where xi is the molar fraction of sites of type i. In our
case the molecule is formed by ®ve di� erent types of site
so that xi ˆ 0:2 for all of them. When the one-¯uid
mixing rules are applied to the LJ model of this work
it yields "x="11 ˆ 0:830 20 and ¼x=¼11 ˆ 0:812 31.

Therefore the residual free energy of the reference
unbonded LJ system (formed by 5 di� erent types of
monomer site) is approximated to that of a pure LJ
¯uid with parameters "x and ¼x:

Amix
res

NmonokT
ˆ A1f

res

NmonokT
: …31†

Similarly we shall assume that

yij…¼ij† ˆ y1f …¼x†: …32†

It is important to mention that the properties of the
left and right hand sides are evaluated at the same abso-
lute temperature and number density for the reference
system of unbonded monomers and for the equivalent
one-¯uid system. However, note that the same absolute
temperature corresponds to two di� erent reduced tem-
peratures in the left and right hand sides, and that the
same number density corresponds to di� erent reduced
densities in the left and right hand sides. In fact, proper-
ties on the left hand side correspond to a reduced
number density of monomers of 5»¤ and to a reduced
temperature of T ¤, whereas on the right hand side they
correspond to 5»¤

x and T ¤
x, where we have de®ned »¤

x as

»¤
x ˆ »¼3

x …33†

and

T ¤
x ˆ T =…"x=k†: …34†

By using equations (26)±(34) along with the parametri-
zation of the properties of the LJ ¯uid (free energy and
yij) performed by Johnson, Muller and Gubbins [9, 51]
the properties of the pure R isomer are obtained readily.
Note that some care is needed when using this correla-
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tion at very low densities [52]. Obviously the properties
of the pure R isomer are identical to those of the S
isomer. The same is true for the racemic mixture, since
TPT1 does not distinguish between the optical isomers.
Therefore, according to TPT1, the properties of the pure
isomers and those of the racemic mixture are indistin-
guishable.

3. Results
3.1. Results for the hard primitive model

Before presenting the results for the chiral HPM let us
discuss the results for two other models for which simu-
lations were performed in order to test the Monte Carlo
program. First of all we performed simulations for the
tetrahedral (non-chiral) model proposed by Abascal and
Bresme [53]. We found good agreement between our
results and those reported by Abascal and Bresme. We
then performed simulations for a tetrahedral model
(non-chiral) formed by a central sphere of diameter
unity, and four tangent spheres of diameter unity, tan-
gent to the central sphere, and arranged in a tetrahedral
coordination. This model, presented in ®gure 1 (b), was
®rst proposed by Sear et al. [54], and we shall refer to it
as the Sear±Amos±Jackson model. In table 3 the simula-
tions results for the Sear±Amos±Jackson model
obtained in this work are presented. These results were
obtained by using 108 particles and runs consisting of
60 000 cycles for equilibration and 60 000 cycles for
averages. In the same table we have included the simula-
tion results of Sear et al. Both sets of data are compared
with each other and with the results from BHS theory
(®gure 2). As can be seen, our results are in good agree-
ment with the results of Sear et al. at low and medium
densities (up to a reduced pressure of 3.6), but at high
densities we obtain higher densities (for a given press-
ure). The results of Sear et al. were obtained from NpT
simulations using a system of 256 particles. We cannot
assess the origin of the discrepancy between our data
and those of Sear et al. for high pressures. Our data
seem to be closer to BHS theory than those of Sear et
al., but this is not a guarantee of accuracy. We repeated
the calculations by using N ˆ 256 molecules (instead of
108), and these results are also presented in table 3. The
EOS obtained was again coincident with our results for
108 molecules. Note that we used ®ve simulations for
increasing the pressure from p¤ ˆ 3:6 up to p¤ ˆ 6,
whereas this compression was performed in just one
simulation by Sear et al. In any case we obtained
(except for their highest pressure) good agreement with
the Sear, Amos and Jackson results.

Now we shall present the results for the primitive
model of a chiral molecule HPM. In table 4 the simula-
tions results for the pure R enantiomer are presented
and in table 5 those for the racemic mixture (with

50% R and 50% S). Figure 3 gives the EOS as obtained

from simulations of the pure ¯uid and of the racemic

mixture. The BHS theory results are shown also. First

we see that the BHS describes the simulation data quite
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Table 3. Simulation results for the tetrahedral (non-chiral)
model of Sear et al. [54]. The model consists of ®ve iden-
tical hard spheres: one central and the other four located
in tetrahedral coordination, bonded tangentially to the
central sphere. The ®rst set of results corresponds to the
simulation results of this work. Results below the line are
those of Sear et al. [54]. The number of molecules used in
the simulations is denoted N.

p¤ »¤ y Z N

0.1 0.040 0 0.104 7 2.500 108
0.3 0.065 9 0.172 5 4.552 108

0.5 0.081 2 0.212 6 6.157 108

0.7 0.091 3 0.239 0 7.667 108
0.9 0.099 8 0.261 3 9.018 108

1.1 0.108 1 0.283 0 10.175 108

1.6 0.120 7 0.316 0 13.256 108
2.1 0.130 3 0.341 1 16.116 108

2.6 0.138 7 0.363 1 18.745 108

3.1 0.145 2 0.380 1 21.349 108
3.6 0.150 4 0.393 7 23.936 108

4.1 0.155 4 0.406 8 26.383 108

4.6 0.161 5 0.422 8 28.483 108
5.1 0.164 7 0.431 2 30.965 108

5.6 0.168 6 0.441 4 33.214 108
6.1 0.171 2 0.448 2 35.630 108

0.1 0.039 79 0.104 17 2.513 256

0.3 0.066 11 0.173 08 4.537 256
0.5 0.081 57 0.213 55 6.129 256

0.7 0.091 19 0.238 73 7.676 256

0.9 0.099 56 0.260 65 9.039 256
1.1 0.107 17 0.280 57 10.264 256

1.6 0.121 67 0.318 53 13.150 256

2.1 0.131 24 0.343 59 16.001 256
2.6 0.138 95 0.363 77 18.711 256

3.1 0.145 69 0.381 42 21.278 256

3.6 0.150 76 0.394 69 23.879 256
4.1 0.156 43 0.409 53 26.209 256

4.6 0.162 36 0.425 03 28.333 256

5.1 0.165 15 0.432 36 30.881 256
5.6 0.168 87 0.442 10 33.161 256

6.1 0.171 91 0.450 06 35.483 256

0.094 862 903 0.039 038 232 0.102 2.43 256
0.213 443 97 0.057 687 559 0.151 3.70 256

0.418 312 67 0.075 236 091 0.197 5.56 256

0.758 386 04 0.094 326 621 0.247 8.04 256
1.309 991 6 0.113 419 19 0.297 11.55 256

2.194 600 2 0.130 243 34 0.341 16.85 256

3.610 340 8 0.147 060 72 0.385 24.55 256
5.889 967 9 0.160 445 87 0.420 36.71 256



well up to high densities. Therefore, it seems a suitable

theory for describing the EOS of systems similar to

those considered in this work. Second, as can be seen

in ®gure 3 the EOS of the pure ¯uid and that of the
racemic mixture are similar and any di� erences between

the two systems fall within the error bars. A careful

inspection to tables 4 and 5 reveals that in some cases

for a given pressure the density of the racemic mixture is

higher than that of the pure R isomer, whereas for a
slightly higher or lower pressure the opposite is true.

This indicates that di� erences between the two models

are smaller than the statistical error associated with our
simulations. We again recall that the data of tables 4 and

5 correspond to the averages of two independent runs.

We conclude that we do not observe signi®cant di� er-

ences in the EOS between the pure R isomer and the

racemic mixture, and if di� erences exist then they are
smaller than the statistical error associated with our

simulations. The only exception to this is the behaviour

at the highest densities, where we observe di� erences

between the pure enantiomer and that of the racemic
mixture. In fact the racemic mixture seems to have a

higher density than the pure enantiomer. It seems that

the racemic mixtures show better packing of the mol-

ecules at very high pressures (or densities). In fact we
have performed ®ve independent runs, for p¤ ˆ 12:10,

for the pure R enantiomer and for the racemic mixture

(table 6), and the density of the racemic mixture is

higher than that of the pure R enantiomer. The average
density is presented in the ®nal row of table 6. The

average volume fraction obtained at this pressure is

y ˆ 0:4760 for the pure R ¯uid and y ˆ 0:4800 for the

racemic mixture, so di� erences are about 0.8%, and are
signi®cant. However, the volume fraction for this press-
ure is quite high, and it is not clear whether we are in a
metastable region of the ¯uid branch for the model con-
sidered (i.e. the ¯uid±solid equilibrium may have
occurred at a lower density).

Now let us focus on the structural results (namely the
site±site correlation functions). First we introduced a
consistency check. In the NpT simulations pressure is
imposed on the system. The output of the simulations
is the average density. From the imposed pressure and
the density obtained one can compute the compressi-
bility factor. However, the compressibility factor can
be obtained within the run also by using the virial the-
orem. According to the virial theorem the compressi-
bility factor of a pure ¯uid (say the R isomer) can be
obtained from the expression [27]
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Figure 2. EOS of the tetrahedral model of ®gure 1 (b) line,
results from BHS theory; circles, results from the NpT
simulations of this work; and squares, results from NpT
simulations of Sear et al. [54].

Table 4. NpT simulation results for the R enantiomer of the
HPM model of this work. Results correspond to the aver-
age of two independent runs with N ˆ 256, 120 000 cycles
for equilibration, and 120 000 cycles for obtaining
averages.

p¤ »¤ y Z

0.10 0.052 70 0.077 26 1.897

0.20 0.077 43 0.113 52 2.582
0.30 0.094 48 0.138 51 3.175

0.50 0.118 67 0.173 97 4.213

0.70 0.137 02 0.200 88 5.108
0.90 0.150 94 0.221 29 5.962

1.10 0.163 11 0.239 14 6.743

1.40 0.176 43 0.258 66 7.935
1.60 0.185 35 0.271 74 8.632

2.10 0.202 45 0.296 80 10.373

2.60 0.217 16 0.318 36 11.973
3.10 0.229 14 0.335 93 13.529

3.60 0.240 70 0.352 89 14.956

4.10 0.247 94 0.363 51 16.536
4.60 0.257 36 0.377 31 17.873

5.10 0.264 43 0.387 69 19.286

5.60 0.270 73 0.396 91 20.684
6.10 0.276 57 0.405 47 22.055

6.60 0.283 30 0.415 34 23.296
7.10 0.288 17 0.422 48 24.638

7.60 0.292 21 0.428 40 26.008

8.10 0.298 26 0.437 27 27.157
8.60 0.302 65 0.443 70 28.415

9.10 0.307 74 0.451 18 29.569

9.60 0.310 93 0.455 84 30.875
10.10 0.313 19 0.459 16 32.248

11.10 0.318 42 0.466 83 34.859

11.60 0.321 33 0.471 09 36.099
12.10 0.324 53 0.475 78 37.284

12.60 0.325 70 0.477 51 38.685

13.10 0.327 75 0.480 50 39.970
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ˆ 1 ‡ 2

3
p»

X

¬­

¼2
¬­ g¬­ …¼¬­ †hr12 ¢ m¬­ ic; …35†

where the sum runs over all pairs of sites in the mol-
ecule, g¬­ …¼¬­ ) is the contact value of the pair correla-
tion function between sites ¬ and ­ , r12 is the vector
connecting the reference atoms of the molecule (in this
case the central atoms), m¬­ is a unit vector between site

¬ in molecule 1 and site ­ in molecule 2, the expression
in pointed brackets denotes thermodynamic average,
and the subscript c indicates that the bracket is evalu-
ated at contact (i.e. when the two sites ¬ and ­ are at a
distance given by ¼¬­ ). Evaluation of the virial for hard
bodies requires the evaluation of contact values of the
pair correlation function. We evaluated the contact
values by extrapolating the required functions to contact
at short distances. Table 7 gives all the contact values
required to evaluate the virial, for the pure R isomer
¯uid at p¤ ˆ 1:6. The value of Z from our NpT simula-
tions yields 8.63, whereas the expression from the virial
theorem yields 8.59, which is in reasonable agreement.
This provides us with con®dence in our determination of
the pair correlation functions.

As we have shown above, at low and medium pres-
sures the EOS of the racemic mixture is identical (within
statistical uncertainty) to that of the pure R ¯uid. How-
ever, at high pressures di� erences in the EOS between
the pure R ¯uid and the racemic mixture appear.

An interesting issue is whether in the racemic mixture
there is any structural di� erence in the correlation
between molecules of type R with respect to crossed
correlation between a molecule of type R and another
of type S. These site±site correlation functions can be
studied, within the racemic mixture, for pairs of mol-
ecules of type R to yield the gRR

ij , or between a molecule
of type R and another of type S to yield gRS

ij . The ques-
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Table 5. NpT simulation results for the racemic mixture of
the HPM model of this work. Results correspond to the
average of two independent runs with N ˆ 256, 120 000
cycles for equilibration, and 120 000 cycles for obtaining
averages.

p¤ »¤ y Z

0.10 0.052 40 0.076 82 1.908
0.20 0.077 62 0.113 80 2.576
0.30 0.094 14 0.138 02 3.186
0.50 0.119 27 0.174 86 4.192
0.70 0.136 54 0.200 18 5.126
0.90 0.150 77 0.221 03 5.969
1.10 0.162 08 0.237 63 6.786
1.40 0.177 57 0.260 33 7.884
1.60 0.185 19 0.271 49 8.640
2.10 0.202 30 0.296 58 10.380
2.60 0.216 34 0.317 18 12.018
3.10 0.228 96 0.335 68 13.539
3.60 0.238 67 0.349 91 15.083
4.10 0.248 25 0.363 97 16.515
4.60 0.256 53 0.376 09 17.931
5.10 0.263 95 0.386 98 19.321
5.60 0.270 26 0.396 22 20.720
6.10 0.276 34 0.405 14 22.074
6.60 0.282 28 0.413 85 23.381
7.10 0.288 99 0.423 68 24.568
7.60 0.292 99 0.429 54 25.939
8.10 0.297 53 0.436 20 27.224
8.60 0.302 32 0.443 22 28.446
9.10 0.306 22 0.448 94 29.717
9.60 0.310 86 0.455 74 30.882

10.10 0.313 66 0.459 85 32.200
11.10 0.320 65 0.470 10 34.617
11.60 0.322 82 0.473 28 35.934
12.10 0.327 42 0.480 02 36.956
12.60 0.329 48 0.483 05 38.241
13.10 0.332 70 0.487 76 39.374

Figure 3. EOS for the HPM of this work: circles, results for
the pure R enantiomer; squares, results for the racemic
mixture; and line, results from BHS theory.

Table 6. NpT simulations results with
N ˆ 256 molecules for the HPM of
this work with p¤ ˆ 12:10. Results are
presented for ®ve independent runs of
the pure R enantiomer »¤

R and for the
racemic mixture »¤

RS. In the last row is
the average density from these inde-
pendent runs.

»¤
R »¤

RS

0.324 92 0.327 59
0.324 49 0.326 82

0.325 08 0.327 31

0.324 54 0.327 27
0.324 60 0.328 00

0.324 7 0.327 4



tion is to analyse structural di� erences between di� erent
components in the racemic mixture. For that purpose we

have decided to study the racemic mixture at two dif-

ferent densities. One corresponds to a low density state
y ˆ 0:1690 (a reduced pressure of about 0.5) and the

second corresponds to a high density state y ˆ 0:3974
(a reduced pressure of about 5.6). Simulations were then

performed in the NVT ensemble. In order to have good

statistics, we performed ®ve independent runs of 400 000
cycles each, with an initial con®guration taken from an

equilibrated ¯uid, and we used dr ˆ 0:05¼11 to improve
the statistics for gij. Altogether, these conditions guar-

antee an uncertainty in gij for a given value of r of about

0.004. Such high accuracy is needed in order to establish
solid conclusions concerning the structural properties of

the system.

The g11 site±site correlation function is shown at low
(®gure 4 (a)) and at high (®gure 4 (b)) densities. As can

be seen in the racemic mixture, site±site correlation func-

tions between pairs of R molecules and between an R
and an S molecule are almost identical. However, small

di� erences are found. In fact the dashed line turns out to
be slightly higher than the solid line in ®gure 4 (a; b).

One striking feature shown in ®gure 4 is that the solid

line is below the dashed line for all distances between the
sites. One could be tempted to state that there are small

di� erences between g11 for RR correlations and for RS

correlations. However, it will be shown now that this is
not correct. We have used equations (7) and (8) to com-

pute site±site correlation functions. This is the usual pro-

cedure when dealing with mixtures. However, this is not
appropriate when dealing with mixtures with compon-

ents that are almost identical. To illustrate that, let us
assume an imaginary binary mixture of hard spheres of

diameter 1 for component A and also 1 for component

B. Let us assume that half of the molecules are of type A
and half of the molecules are of type B. Our binary

mixture is indeed a pure hard sphere ¯uid, but we arti®-
cially label the hard spheres of the system as being of

type A or of type B. In ®gure 5 (a) the gAA and gAB as

obtained from a computer simulation with N ˆ 256 and
y ˆ 0:35 are shown. As can be seen, gAB is slightly

higher than gAA. The di� erence is small but can be

seen. On a physical basis gAA and gAB should be iden-
tical for this mixture. However, when equations (7) and

(8) are used this is not the case. The reason for this

discrepancy is that in our imaginary mixture the
number of AB pairs is given by NANB. However, the

number of AA pairs is NA…NA ¡ 1†=2 and the number
of BB pairs is NB…NB ¡ 1†=2. When using equation (7)

for gAB we are using NANB in the denominator. When

using equation (8) for gAA we are dividing by NANA,
and NBNB for gBB. This is not fully correct, since it does

not correspond to the true number of pairs in the
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Table 7. Determination of the pressure by the virial theorem for the pure R isomer of the HPM at p¤ ˆ 1:6. For each site±site
interaction gij the contact value of the pair correlation function g¬­ …¼¬­ † and the contact value of the function hr12 ¢ m¬­ ic (in
¼11 units) are given. The last column is the multiplicity (i.e. the number of times that this interaction appears in the virial
theorem), which is 2 for interactions between di� erent sites and 1 for interactions between the same type of site. The contribu-
tion of each interaction to the virial (except by the multiplicity) is given by ¼2

¬­ g¬­ …¼¬­ †hr12 ¢ m¬­ ic (see equation (35) of the main
text) and this is presented in the ®fth column.

Kind ¼¬­ g¬­ …¼¬­ † hr12 ¢ m¬­ ic Contribution Multiplicity

g11 1.00 0.02 1.00 0.02 1

g12 0.95 0.60 1.30 0.70 2

g22 0.90 1.70 1.29 1.78 1
g13 0.90 0.63 1.27 0.65 2

g23 0.85 1.51 1.23 1.34 2

g33 0.80 1.40 1.22 1.09 1
g14 0.85 0.65 1.24 0.58 2

g24 0.80 1.38 1.22 1.08 2

g34 0.75 1.30 1.20 0.88 2
g44 0.70 1.25 1.15 0.70 1

g15 0.80 0.65 1.20 0.50 2

g25 0.75 1.28 1.24 0.86 2
g35 0.70 1.29 1.16 0.73 2

g45 0.65 1.12 1.10 0.52 2

g55 0.60 1.10 1.08 0.43 1



system. In fact the problem can be corrected if the
site±site correlation functions are computed from the
formulas:

gRS
ij …r† ˆ f

hNRS
ij …r†i

NR»SV …r† ; …36†

gRR
ij …r† ˆ f

hNRR
ij …r†i

…NR ¡ 1†»RV …r† : …37†

Figure 5 (b) shows the site±site correlation functions
as obtained by equations (36) and (37) for our imaginary
mixture of hard spheres. As can now be seen, gAA and
gAB are fully coincident, as they should be. For ordinary
mixtures, where component A and B are quite di� erent,
the subtle issue of dividing by NA or by NA ¡ 1 in equa-
tion (37) will not a� ect the results signi®cantly. How-
ever, for mixtures where structural di� erences between
gAA and gAB are expected to be small, some care should
be taken. Therefore, we shall use equations (36) and (37)
instead of (7) and (8) to compute site±site correlation
functions in this work. Note that for large values of r,
gRS

ij as given by equation (36) tends to one, whereas gRR
ij

tends to a value slightly higher than one. In ®gure 4 (c; d)
the g11 function at low and high densities is shown,
obtained using equations (36) and (37). As can now be
seen, RR and RS correlations are practically identical,
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(a)

(b)

(c)

(d)

Figure 4. g11 in the racemic mixture obtained from the NVT
simulations of this work: full line, gRR

11 ; and dashed line,
gRS

11 . (a) Results for a low density state with y ˆ 0:1690,
»¤ ˆ 0:115 28: g11 was obtained using equations (7) and
(8) of the main text. (b) Results for a high density state
with y ˆ 0:3974, »¤ ˆ 0:271 06: g11 was obtained using
equations (7) and (8) of the main text. (c) Results for a
low density state with y ˆ 0:1690, »¤ ˆ 0:115 28: g11 was
obtained using equations (36) and (37) of the main text.
(d) Results for a high density state with y ˆ 0:3974;
»¤ ˆ 0:271 06: g11 was obtained using equations (36) and
(37) of the main text.



and di� erences fall well below the statistical error of our
simulations. Therefore, we conclude that in the racemic
mixture no di� erences are found between RR and RS
correlations for g11. In all the simulations of this work
we checked that gRR

ij and gSS
ij were identical in the

racemic mixture. This is an exact and obvious result.
The fact that we reproduced this result is a guarantee
of good equilibration in the racemic mixture. However,
our ®nding that gRR

ij and gRS
ij are also identical is an

unexpected result whose explanation does not seem
obvious at all. Let us now present structural results for
other correlation functions in the racemic mixture to see
whether this surprising result also holds for other site±
site correlation functions.

In what follows we shall use equations (36) and (37) to

compute site±site correlation functions. In ®gure 6 the

g33 site±site correlation function is shown at (a) low and

(b) high densities. In ®gure 7 the g55 function (i.e. the

correlation function between the smallest sites of the
molecule) is presented for (a) low and (b) high density

systems. The results in ®gures 6 and 7 were obtained for

the racemic mixture. Figures 6 and 7 also show the site±

site correlation function between R molecules (solid

lines) and between an R and an S molecule (dashed

line). As can be seen, in the racemic mixture site±site

correlation functions between two R molecules and
between an R and an S molecule are indistinguishable

at both low densities and high densities. We should

mention that the inclusion of exchange moves (i.e. an

Computer simulation of racemic mixtures 2409

(a)

(b)

Figure 5. Pair correlation function in a pure hard sphere
¯uid with N ˆ 256, y ˆ 0:35 and ¼ ˆ 1 (half the molecules
are labelled A and the other half B): full line, gAA; dashed
line, gAB. For clarity only the region with r¤ > 1:25 is
shown. (a) Results when equations (7) and (8) were used
to compute gAA and gAB. (b) Results when equations (36)
and (37) were used to compute gAA and gAB.

(a)

(b)

Figure 6. g33 in the racemic mixture obtained from the NVT
simulations of this work: full line, gRR

33 ; dashed line, gRS
33 .

Note that the full and dashed lines are indistinguishable
within the scale of the ®gure. (a) Results for a low density
state with y ˆ 0:1690, »¤ ˆ 0:115 28. (b) Results for a high
density state with y ˆ 0:3974, »¤ ˆ 0:271 06.



R and an S molecule exchanging their positions) is abso-
lutely necessary when analysing structural di� erences.

When the exchanges moves are not included it is poss-

ible to observe di� erences between RR and RS correla-

tions (even at low densities). These di� erences are

indicative of incomplete equilibration rather than physi-
cal di� erences. In fact these di� erences disappear com-

pletely once exchange moves are included. We do not

observe di� erences in the racemic mixture between RR

and RS correlations, and if they exist then certainly they

are smaller than the accuracy of our calculations (i.e.
0.004). The striking similarity between RR and RS

site±site correlation functions in the racemic mixture

shown in ®gures 4 (c; d), 6 and 7 suggest that they may

indeed be identical. Indeed, we checked all possible site±
site correlation functions (i.e. g12; g13; . . .), and again the
same scenario as that shown in ®gures 6 and 7 appears.
Although we do not have a mathematical proof, our
results strongly suggest that for a racemic mixture gRR

ij
is indeed identical to gRS

ij . In other words, at the level of
site±site correlation functions, no distinction is made in
a racemic mixture between RR and RS correlations.
This is probably one of the most important results of
this work. We searched in the literature for some evi-
dence, or previous suggestion for this surprising ®nding
and found that this is predicted by the RISM-HNC inte-
gral equation [22]. More simulation/theoretical work is
needed in order to assess whether this surprising result is
limited to the HMP studied in this work, or is a general
result for any racemic mixture. Note that if gRR

ij is iden-
tical to gRS

ij , and since it must be equal to gSS
ij , it means

that all site±site correlation functions are identical. That
may have important thermodynamic consequences con-
cerning the possibility/impossibility of ¯uid±¯uid phase
separation in racemic mixtures.

After the surprising ®nding illustrated in ®gures 6 and
7 the natural question that arises is the following. In the
racemic mixture there is no di� erence in site±site corre-
lation functions between RR and RS correlations. How-
ever, does the structure of the racemic mixture di� er
from that of a ¯uid made up from molecules of a pure
enantiomer, say R. In other words, are there structural
di� erences between the racemic mixture and the pure R
¯uid? In ®gure 8, g11, g12, g13, g14 and g15 are shown for
the racemic mixture and for the pure R ¯uid at y ˆ
0:3974. Again the results were obtained within the
NVT ensemble and those presented correspond to
averages of ®ve independent runs with 400 000 cycles
and dr ˆ 0:05¼11. Note that now we are comparing
results for two di� erent ¯uids, namely a pure enan-
tiomer and the racemic mixture. This is di� erent from
the results of ®gures 6 and 7, where we presented RR
and RS correlations in the same racemic mixture. In
®gure 8 the g11, g12, g13, g14 and g15 correlation functions
of the pure R ¯uid are close to those of the racemic
mixture. However, clear di� erences are now visible
between the pure R enantiomer and the racemic mix-
ture, di� erences four to ®ve times larger than our statis-
tical uncertainty in g. Therefore, the di� erences
presented in ®gure 8 do exist. We conclude that struc-
tural di� erences exist between a pure R enantiomer and
a racemic mixture when the two are compared at the
same number density. Larger di� erences between the
racemic mixture and the pure R ¯uid were obtained
for correlations involving the central atom labelled 1.
These results make sense. We observe di� erences
between the EOS of a pure R ¯uid and of the racemic
mixture at high pressures. These di� erences in the EOS
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(a)

(b)

Figure 7. g55 in the racemic mixture obtained from the NVT
simulations of this work: full line, gRR

55 ; dashed line, gRS
55 .

Note that the full and dashed lines are indistinguishable
within the scale of the ®gure. (a) Results for a low density
state with y ˆ 0:1690; »¤ ˆ 0:115 28. (b) Results for a high
density state with y ˆ 0:3974, »¤ ˆ 0:271 06.



should be re¯ected in the structural properties. In fact

for a certain density the pressure of the pure R isomer

seems to be slightly higher than that of the racemic

mixture. This is in agreement with the results of ®gure

8, where contact values for g1j of the pure R enantiomer

seem to be slightly higher than those of the racemic
mixture.

At this point the picture emerging from our results is

that a racemic mixture behaves as an almost ideal mix-
ture. Di� erences found between the pure R isomer and

the racemic mixture for the EOS and for the structural

properties are quite small. The only di� erences are
found at high densities, where certain indications of

better packing of molecules of type R with molecules

of type S (compared with RR packing) are obtained.
Evidence of this is obtained from the NpT runs from

the higher density of the racemic mixture with respect to

the pure enantiomer, and in the NVT runs by the higher
contact values of the site±site correlation functions of

the pure enantiomer with respect to that of the racemic
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(a)

(b)

(c)

(d)

(e)

Figure 8. Site±site correlation in the pure R enantiomer (full
line) and in the racemic mixture (dashed line) obtained
from NVT simulations with y ˆ 0:3974: with the results
for (a) g11; (b) g12; (c) g13; (d) g14; and (e) g15.



mixture (when both are compared at the same number
density). We must again stress that di� erences are quite
small.

In order to analyse the low density behaviour of the
EOS we have computed the second, third and fourth
virial coe� cients of the HPM. We evaluated these
virial coe� cients with high accuracy so that they are
particularly appropriate for analysing di� erences. The
results are presented in table 8. Again BRR

2 and BRS
2

are identical to within statistical uncertainty. The same
occurs for BRRR

3 and BRRS
3 and for BRRRR

4 and BRRRS
4

and BRRSS
4 . Taking into account the accuracy of our

calculations, we can say that the di� erences between
BRR

2 and BRS
2 (if any) are smaller than 1/3000, between

BRRR
3 and BRRS

3 (if any) are smaller than 1/1600 and
between BRRRR

4 , BRRRS
4 , BRRSS

4 (if any) are smaller
than 1/1540. Of course an open question is whether
di� erences may be larger for higher virial coe� cients
(i.e. ®fth, sixth; . . .).

Our study of the HPM has not revealed big di� er-
ences between the R isomer pure ¯uid and the racemic
mixture. Since experimentalists have determined excess
properties of real mixtures of racemic compounds we
decided to analyse in detail a mixture of molecules
with attractive forces, to see if di� erences emerge when
attractive forces are included. For that purpose the
HPM has been replaced by a model with the sites
located in the same position as in the HPM model,
but replacing the hard sphere interaction by a
Lennard-Jones interaction (and with the simple pre-
scription "ii ˆ ¼ii) as described in } 2.

3.2. Results for the Lennard-Jones primitive model of a
chiral molecule

In table 9 the simulation results of this work for the
LJPM are presented for the pure R isomer and for the
racemic mixture at a supercritical isotherm (i.e.
T ¤ ˆ T =…"11=k† ˆ 4. Details of the simulations were as
those described above. It is seen that we do not observe

any systematic deviations in density between the pure R
¯uid and the racemic mixture. Sometimes the R ¯uid

presents a higher density and sometimes a lower density
than the racemic mixture. No systematic trend is found
in the di� erences. This indicates that any di� erences in

density shown in table 9 between the two systems are

erratic, and therefore fall within the statistical error of
our simulations. It is seen that for a certain pressure the
system with higher density tends to have a higher

internal energy. Therefore the internal energy is corre-
lated with the average density, and no de®nitive conclu-

sion can be drawn on systematic di� erences between the
two systems. Therefore again our results, show that dif-

ferences between the pure R ¯uid and the racemic mix-
ture fall within the statistical uncertainty of our

simulations. The same type of result as for the HPM
model are obtained here.

In ®gure 9 a comparison is shown between the imple-
mentation of Wertheim’s theory proposed in this work

and the simulation results (a) for the EOS and (b) for the
internal energy. As can be seen, the agreement is excel-
lent for the EOS and fair for the internal energy.

Figure 10 presents the g15 and g55 site±site correlation
functions as obtained from NVT simulations (T ¤ ˆ 4

and »¤ ˆ 0:2419) of the LJPM model for the pure R
¯uid and for the racemic mixture. The results presented

correspond to the average of three independent runs
(300 000 cycles were used for determining average

properties in each run). The width of the grid used to
determine the site±site correlation functions was

dr ˆ 0:05¼11. Again no di� erence was found between

gRR
15 and gRS

15 in the racemic mixture. The same is true
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Table 8. Virial coe� cients of the HMP
model as determined numerically in
this work. Resutls are given in reduced
units so that Bi is given in units of
V …i¡1†

m . The results presented corre-
spond to the average of four indepen-
dence calculations.

BRR
2 12.103 § 0.004

BRS
2 12.104 § 0.002

BRRR
3 81.06 § 0.05

BRRS
3 81.07 § 0.03

BRRRR
4 308.4 § 0.2

BRRRS
4 308.4 § 0.2

BRRSS
4 308.4 § 0.2

Table 9. NpT simulation results for the LJPM model of this
work. Results are presented for the pure R isomer »¤

R and
for the racemic mixture »¤

RS. The reduced pressure is given

in units of p¤ ˆ p=…kT =¼3
11†.

p¤ »¤
RS »¤

R …U=N"11†RS …U=N"11†R

0.125 0.090 55 0.090 37 73.993 85 73.987 20
0.250 0.131 70 0.131 74 76.041 98 76.045 00

0.375 0.156 95 0.156 49 77.374 10 77.345 01

0.500 0.173 78 0.174 10 78.282 74 78.302 57
0.750 0.198 86 0.198 56 79.650 14 79.631 35

1.000 0.216 36 0.216 40 710.583 29 710.578 85

1.250 0.230 24 0.230 28 711.284 82 711.290 37
1.500 0.241 97 0.241 95 711.859 79 711.863 21

1.750 0.251 65 0.251 80 712.294 58 712.306 07

2.000 0.260 45 0.260 32 712.679 28 712.683 59
2.250 0.268 07 0.267 93 712.984 30 712.967 22

2.500 0.275 05 0.275 05 713.241 52 713.241 51

2.750 0.281 55 0.281 37 713.459 12 713.440 92
3.000 0.287 48 0.287 24 713.645 55 713.618 80

3.250 0.292 75 0.293 06 713.780 33 713.813 35



for gRR
55 and gRS

5 in the racemic mixture. That gives
further support to our suggestion that RR and RS
site±site correlation functions are identical in a racemic
mixture. In ®gure 10 the site±site correlation functions
for the pure R enantiomer are also presented. Clear
structural di� erences between the pure R enantiomer
and the racemic mixture are visible. Thus the results
for the LJPM support all our previous ®ndings for the
hard system.

4. Conclusion
All experimental studies on racemic mixtures have

found very small excess properties: these types of mix-

ture are quite close to ideal in their behaviour. Excess
volumes for these kinds of mixture are of about 0.01%
of the molar volume of the system [17], and excess
enthalpies are of similar magnitude. In view of that it
is not surprising that the main ®nding of this work is the
strong similarity found between the pure enantiomeric
¯uid and the racemic mixture, for both the hard model
and the Lennard-Jones model. In fact only at high den-
sities do we observe some small di� erences between the
two systems, both in the equation of state and in the
structural properties. The di� erences found are much
larger than our statistical uncertainties, so that we are
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(a)

(b)

Figure 9. Results for the LJ primitive model proposed in this
work for T ¤ ˆ 4 obtained from the theory of this work
(lines) and from simulation for the pure R enantiomer
(open circles) and for the racemic mixture (open tri-
angles): (a) results for the EOS; and (b) results for the
residual internal energy.

(a)

(b)

Figure 10. Site±site correlation functions for the LJPM at
T ¤ ˆ 4 and »¤ ˆ 0:2419 obtained from NVT simulations:
full line, results for the pure R ¯uid; long dashed line, RR
correlations in the racemic mixture; and short dashed
lines, RS correlations in the racemic mixture. Note that
the long and short dashed lines are indistinguishable at
the scale of the ®gure. (a) g15 correlation function, and (b)
g55 correlation function.



con®dent about the fact that these di� erences do indeed

exist. Di� erences found are consistent with better

packing between di� erent pair of molecules (R with S)

with respect to the packing between identical pairs of

molecules (R with R). Better packing between unlike
molecules may be the reason why racemate compounds

are often found in the solid phase of racemic mixtures.

In fact, the formation of a compound R:S (1:1) may

yield higher close packing density than the pure R and

S in the solid phase, and the formation of racemate
compounds is found in 90% of the cases for racemic

mixtures, versus the formation of conglomerates (i.e.

R and S crystallizing into di� erent crystals), which

appears in only 10% of the cases (Pasteur’s classic ex-
ample of sodic tartrate belonging to this second group).

The formation of solid solutions is relatively rare (i.e.

less than 1%).

One general issue that appears from this study is the
di� culty in obtaining excess properties of chiral mix-

tures from computer simulations. In fact, this is a

major problem, since the magnitude of the excess prop-

erties will in general be smaller than the statistical uncer-

tainty of the simulations. It is our feeling that computer
simulations may prove to be more useful in studying

racemic mixtures in the solid phase, and probably it is

for solid phases where computer simulations can help us

understand the rich behaviour exhibited by mixtures of
chiral compounds.

In this work, our goal was to choose a simple model

of a racemic mixture for which a good theoretical EOS is

available (namely the BHS), and to perform simulations

to analyse possible di� erences between the pure enan-
tiomer and the racemic mixture. The main outcome is

that the di� erences are quite small, and fall for most of

the cases (except at very high densities) within the range

of the statistical error. The inclusion of attractive forces

via the LJ model does not substantially change this con-
clusion. One interesting result of this work is that in the

racemic mixture we did not ®nd di� erences in site±site

correlation functions between RR pairs and RS pairs. If

di� erences exist they are smaller than the statistical

uncertainty of our gij (typically 0.004). We suggest that
they may indeed be identical. More work is needed to

analyse this point in more detail, to see if it holds for

other models, and whether it can be proved from geo-

metrical considerations.
To the best of our knowledge no previous calculations

have been performed for the virial coe� cients between

mixtures of optically active molecules. This gap is ®lled

by the present work. Again, we did not ®nd di� erences
between the virial coe� cients (up to the fourth) of the

pure enantiomeric ¯uid and those of the racemic mix-

ture. They agree within our statistical error.

A natural question arising from our work is whether

one can obtain or derive a model for which larger di� er-
ences may be found between the pure enantiomer and
the racemic mixture. Then what geometrical or energe-
tical factors will enhance the di� erences between pure
¯uids and racemic mixtures? Can our HPM model (or its
LJ counterpart) version be modi®ed to observe large
di� erences? At this point we do not know the answers

to these interesting questions. We feel that the search of
other models for which di� erences may be larger may be
worthwhile in order to understand the factors that con-
tribute to making a racemic mixture less ideal. When
dealing with hard bodies, usually one introduces a
non-sphericity parameter ¬. The larger the value of ¬,

the more anisotropic is the molecule. Usually ¬ can be
obtained if the second virial coe� cient between the hard
bodies is known. It would be quite useful to introduce a
chirality parameter, measuring di� erences between the
interactions between pairs of identical molecules and
pairs of specular molecules. One possibility for this par-

ameter would be

À ˆ BRS
2 ¡ BRR

2

BRR
2

; …38†

which will measure di� erences between like and unlike
interactions between pairs of molecules at the level of

the second virial coe� cient. A value of zero would be
indicative of a quasi-ideal mixture, whereas a high value
of À would be indicative of a mixture that probably will
exhibit important di� erences from ideality. In this work,
the value of À (for the hard HPM) is zero (at least within
the statistical uncertainty of our calculations). Is there
any geometrical factor that could make the value of À
larger, or is the zero (or almost zero) value of À a general
feature of nature? Certainly further work on this issue is
needed. Virial coe� cient calculations can be a useful
tool for obtaining relevant information since they are
performed with considerably less computational e� ort,
and can yield higher accuracy than other numerical
techniques, for instance, Monte Carlo simulations.

In a sense this work is just a ®rst step towards the
study of a problem that has received very little attention
from either the experimental or the theoretical com-
munity.
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