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The phase diagram of flexible molecules formed by freely-jointed tangent spheres is studied
using the first-order thermodynamic perturbation theory of Wertheim for both fluid and solid
phases. A mean-field term is added to the free energy of the fluid and solid phase in order to
account for attractive dispersion forces. The approach is used to determine the global (solid–
liquid–vapour) phase diagrams and triple points of chain molecules of increasing chain length.
It is found that the triple point temperature is not affected strongly by the length of the chain,
whereas the gas–liquid critical temperature increases dramatically. The asymptotic limits of
the phase diagram for infinitely long chains are discussed. The reduced critical temperature of
infinitely long chains as given by the mean-field theory is 2=3, and the reduced triple point
temperature is 0:048 56, so that an asymptotic value of Tt=Tc ¼ 0:072 84 for the ratio of the
triple to critical point temperatures is obtained. This indicates that fully-flexible tangent chains
present an enormous liquid range. The proposed theory, while being extremely simple, pro-
vides a useful insight into the phase behaviour of chain molecules, showing the existence of
finite asymptotic limits for the triple and critical point temperatures. However, since n-alkanes
present an asymptotic limit of about Tt=Tc ¼ 0:40, the agreement with experiment is not
quantitative. This suggests that fully flexible models may not be appropriate to model the
solid phases of real chain molecules.

1. Introduction

Flexible molecules are important both from a theor-

etical and from a practical point of view. When consid-

ering fluid phases one of the most successful approaches

for modelling the phase behaviour of flexible molecules

is due to Wertheim [1–5]. The first-order thermodynamic

perturbation theory of Wertheim (TPT1) was first devel-

oped to study the thermodynamic behaviour of associ-

ating fluids, but in the limit of infinite association, the

theory also allows one to determine the thermodynamic

properties of chain molecules [5–7]. According to TPT1

fully-flexible chain fluids can be described using only

thermodynamic information of the reference monomer

fluid. The theory is in excellent agreement with com-

puter simulation data of hard chains [7], and it has

also been shown to be adequate for modelling chains

of soft and attractive monomers [8–14].

Solid phases of chain molecules are of interest since a

number of flexible molecules are solids at room tempera-

ture and pressure. For instance, all linear alkanes with

more than 20 carbon atoms are solids at room tempera-

ture and pressure, and the same is true for

polyethylene [15]. In many industrial processes one has
to deal with fluid–solid separations of alkane mixtures.

However, molecular studies of the fluid–solid equilib-

rium of flexible molecules are rather scarce, and it is

only recently that this problem has been considered

(see [16–26]). An interesting model, which has played

an important role in theoretical studies of the phase

behaviour of chain molecules, is that of fully flexible

chains of tangent hard spheres [27]. In this model the

pair potential between monomers (either in the same or

in different chains) is given by the hard sphere potential,

and there is no bending or torsional potential between
the monomers of the chain (although there is an intra-

molecular pair interaction between monomers of the

same chain separated by more than one bond). Using

computer simulations Malanoski and Monson [17] were
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the first to determine the fluid–solid equilibrium of such
a model. An unobvious question is the nature of the
solid phase of fully flexible chains of tangent spherical
monomers. Malanoski and Monson [17] have shown
that the stable solid structure of such a model is given
by a face-centred cubic (fcc) close-packed arrangement
of atoms (spheres) exhibiting no long range order of
bonds. The extreme flexibility of the freely jointed
model makes the existence of such a solid possible.
Any reduction of flexibility, such as fixing the bond
angles in the model, would make the existence of the
closed-packed solid with random bonds impossible,
since it is unlikely that the molecular bonding angle
would be compatible with the angles of an fcc arrange-
ment of atoms. The possibility of an ordered solid from
the point of view of atoms but not from the point of
view of bonds was first proposed by Wojciechowski and
co-workers [28–30]; they were able to show that the
stable solid structure of tangent hard-disc dimers in
two dimensions is formed by a close-packed arrange-
ment of atoms with a disordered arrangement of
bonds [28–30]. The same idea holds for hard chains [17].
Following the determination of the fluid–solid equi-

librium of fully flexible chains of hard spheres via com-
puter simulations, an interesting question is the
possibility of describing theoretically the fluid–solid
equilibrium of this model. Since Wertheim’s TPT1 is
so successful in describing the fluid phase equilibria of
chain molecules, one may wonder whether it can be
extended also to study the solid phases. Recently,
Vega and MacDowell [23] have shown that the
approach can be extended to model solid phases of flex-
ible hard chain molecules. Following Wertheim, the free
energy of the hard chain system in the solid phase is
given in terms of the free energy of a reference monomer
hard sphere in the solid phase. The theoretical predic-
tions are found to be in excellent agreement with the
simulation data of Malanoski and Monson [17] for the
same system. The approach also gives a good descrip-
tion of the solid phases of two-dimensional freely-
jointed hard discs [24]. Therefore, the phase diagram
of freely-jointed hard chains is well known, both from
simulation and from theoretical studies. However, due
to the absence of attractive forces, hard bodies do not
present vapour–liquid equilibria, and are, in this respect,
somewhat unrealistic. Attractive forces need to be incor-
porated into the model in order to study the fluid–solid
equilibria of real molecules. Little is yet known about
the fluid–solid equilibria of flexible models with attrac-
tive forces. Polson and Frenkel have recently studied by
computer simulation the fluid–solid equilibrium of semi-
flexible Lennard-Jones (LJ) chains [20], and the fluid–
solid equilibrium of n-alkane molecules [21]. We have
recently extended Wertheim’s TPT1 to model fully

flexible LJ chains in the solid phase [25]. Our theory
allows the prediction of the global phase diagram of
LJ chains; we were able to predict the global phase
diagram of chains of finite size (m ¼ 2; 4; 8) and to esti-
mate the triple point temperatures in each case. The
theoretical predictions suggest that the solid–liquid
coexistence curves tend to an asymptotic behaviour for
increasing chain lengths [25]. The theory predicts an
asymptotic limit of Tt=Tc ¼ 0:14 for LJ chains when
the number of monomer units of the chain m goes to
infinity, which corresponds to an enormous liquid range.
However, the results of our theoretical development [25]
should be taken with caution. It should be noted that,
although the theory provides a good description of the
equation of state (EOS) and the internal energies of the
dimer in the solid phase, the free energies were not
tested. Furthermore, due to the lack of simulation
data for LJ chains in the solid phase, it is not clear if
the theory works equally well for longer chains in the
solid phase as it does for dimers. Unfortunately, the
numerical character of the theory means that it is diffi-
cult to assess clearly the existence of asymptotic limits
for the freezing properties of infinitely long LJ chains.
In this work we continue to investigate the large liquid

range exhibited by fully-flexible chains. The approach
we shall follow is a well-established one. Longuet-Hig-
gins and Widom [31] added a simple mean-field term to
the free energies of hard spheres in the fluid and solid
phases (this seminal paper has been reprinted recently in
Molecular Physics [32]). Following this simple approach
they were able to obtain a qualitative picture of the
global phase diagram of a spherical fluid (argon),
including an estimate of the Tt=Tc ratio. These ideas
have also been used by Paras et al. to understand
trends in the variation of the Tt=Tc ratio in
diatomic [33], and linear quadrupolar molecules such
as carbon dioxide [34], and Malanoski and co-workers
have used the same ideas to understand the even–odd
effects in the Tt=Tc ratio of n-alkanes [18, 19]. As sug-
gested by Longet-Higgins and Widom the theoretical
idea is relatively simple. First the fluid–solid equilibrium
of a hard model is obtained with accuracy, either from
computer simulation or from theoretical arguments, and
a mean-field term is added both in the fluid and in the
solid phase in order to obtain the global (gas–liquid–
solid) phase diagram (see the review of Monson and
Kofke for further details [22]). Obviously, and due to
the crude nature of the mean-field approximation, only
a qualitative understanding of the phase diagram can be
obtained in such a way. The advantage of the procedure
is that it is simple both from a conceptual and from a
mathematical point of view. In this work we use the
extension of Wertheim’s TPT1 proposed by Vega and
MacDowell [23] to describe freely jointed chains of hard
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spheres in the fluid and solid phases, and, in order to
study the global phase equilibria, a segment–segment
mean-field contribution is incorporated both in the
fluid and in the solid phase. The addition of a mean-
field term to an accurate EOS of hard fluids (Wertheim’s
TPT1) yields a simple and tractable theory. The
approach has been used previously to study the fluid
phase behaviour of chain fluids (such as n-alkanes and
n-perfluoroalkanes [35, 36]), and strongly associated
fluids (such as hydrogen fluoride [37], waterþ n-alkane
[38] and waterþ surfactant mixtures [39, 40]). In this
work we address principally two questions involving
the solid phases: do fully flexible chains of tangent
hard spheres present a large liquid range as suggested
in our previous study and, do the triple point tempera-
tures of infinitely long flexible chains reach an asymp-
totic limit?
This paper is organized as follows: in section 2 the

extension of Wertheim’s theory to model solid phases
of hard-chain molecules with attractive segment–seg-
ment mean-field interactions is discussed. The calculated
phase behaviour for varying chain lengths is presented
in section 3. Conclusions are given in section 4.

2. Wertheim’s first-order perturbation theory

Consider a system of fully-flexible chains of m tangent
spherical segments (monomers). The system has a
volume V and is at a temperature T. The spherical seg-
ments interact through a pair potential urefðrÞ; in this
work the spherical segments are modelled as hard
spheres of diameter �, so that urefðrÞ is given by the
hard sphere potential. The chains are modelled as fully
flexible, with a fixed bond length L ¼ �, but with no
other constraints (i.e. there is no restriction in either
the bonding angles or in the torsional angles), so that
each monomer of a certain chain interacts with all other
monomers in the system (i.e. in the same molecule or in
other molecules with the only exception of the mono-
mer(s) to which it is bonded) with the pair potential
urefðrÞ. In order to be able to study the fluid phase be-
haviour in this system, dispersive attractive interactions
must also be taken into account. The simplest approach
is to incorporate the Helmholtz free energy contribution
due to the attractive interactions at the mean-field level
of van der Waals. The Helmholtz free energy of the
proposed system can be written as [7]

A
NkBT

¼ A
ideal

NkBT
þ m A

ref
residual

NrefkBT
� ðm� 1Þ ln yrefð�Þ

� m� �mf
kBT

� �
; ð1Þ

where N is the number of chain molecules, kB is Boltz-
mann’s constant, Aideal is the Helmholtz free energy of

an ideal system of flexible chains, Arefresidual is the residual
free energy of the reference monomer system formed by
Nref ¼ Nm hard-sphere molecules and yrefð�Þ is the con-
tact background correlation function [41] of the refer-
ence system (note that in the case of hard-sphere
monomers yrefð�Þ ¼ ghsð�Þ, where ghsð�Þ is the pair cor-
relation function). The dispersion interactions are
treated at the mean-field level of van der Waals, so
that �mf is the integrated van der Waals mean-field
energy, and � ¼ �ref�3p=6 is the packing fraction, with
�ref ¼ Nref=V. The corresponding equation of state is
given by

Z ¼ mZref � ðm� 1Þ 1þ �ref
@ ln yrefð�Þ

@�ref

( )
� m� �mf

kBT

� �
:

ð2Þ

Vega and MacDowell [23] noted that the arguments
used to arrive at equations (1) and (2) make no special
mention of the actual nature of the phase considered.
Following their work, we use these equations to model
both fluid and solid phases of chain molecules. As can
be seen from the expressions, a knowledge of the resi-
dual free energy and compressibility factor of the
monomer hard-sphere system, and of its radial distribu-
tion function at contact, are required, both in the fluid
and in the solid phase. Expressions for these have been
presented in detail elsewhere [23]; here we give a short
summary of the main expressions. The Carnahan–Star-
ling equation of state [42],

Zreffluid ¼
1þ � þ �2 � �3

ð1� �Þ3
; ð3Þ

is used to describe the compressibility factor of the hard-
sphere system in the fluid phase. The residual free energy
in this phase can be easily obtained from this expression
by integration; i.e.

Arefres;fluid
NrefkBT

¼
ð�
0

ðZreffluid � 1Þ d�
�

; ð4Þ

and the virial route

Zreffluid ¼ 1þ 4�greffluidð�Þ ð5Þ

can be used to obtain the contact distribution function.
The compressibility factor of the hard sphere reference
system in the solid phase is described using the equation
of Hall [43],

Zrefsolid ¼ ð12� 3	Þ=	þ 2:557 696þ 0:125 307 7	
þ 0:176 239 3	2 � 1:053 308	3 þ 2:818 621	4

� 2:921 934	5 þ 1:118 413	6; ð6Þ
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where

	 ¼ 4 1� �

�CP

� �
; ð7Þ

and �CP ¼ 21=2p=6. Once the EOS of hard spheres in the
solid phase is known, then the contact value of the radial
distribution function can be obtained from the virial
theorem (as in equation (5) but replacing the compres-
sibility factor of the fluid phase by that of the solid
phase). The free energy of hard spheres in the solid
phase can be obtained by integrating the EOS of Hall,
provided that the free energy at a certain reference den-
sity is known. Polson et al. [44] have performed free
energy calculations for hard spheres in the solid phase,
and report a residual free energy (in NkBT units) of
5.918 89 for � ¼ 0:5450. We use this state and value as
a reference state for the free energy of hard spheres in
the solid phase. See [23] for more details.

3. Results

Using the expressions presented in the previous sec-
tion and in [23], we have calculated the solid–liquid–
vapour phase equilibria of flexible hard chains with
mean-field attractive interactions. Throughout this sec-
tion we use the integrated mean-field dispersion energy
�mf as the unit of energy and the hard-sphere diameter of
the monomers � as the unit of length. According to this,
we define the reduced temperature and pressure as
T� ¼ kBT=�mf and p� ¼ p�3=�mf . The phase equilibria

between two phases can be calculated by equating the
pressure and chemical potentials, and the coexistence
densities are given in terms of the packing fraction �.
The phase diagram for chain molecules of m ¼ 1 to
m ¼ 8 as obtained from the theoretical treatment of this
work are presented in figure 1. It is noticeable that the
increase in chain length results in a more dramatic vari-
ation of the vapour–liquid coexistence densities, than of
those corresponding to the solid–liquid and solid–gas
phase transitions. This behaviour has been observed
previously in systems of fully flexible Lennard-Jones
chains [25]. Since the theoretical predictions corre-
sponding to the vapour–liquid coexistence have been
discussed in detail elsewhere [7], in this work we concen-
trate on the study of the solid–liquid and solid–vapour
phase behaviour. As can be seen, the coexistence
packing fractions corresponding to the solid–liquid
and solid–vapour transitions increase as the chain
lengths increase. The largest increase is observed when
going from the monomer to the dimer system. The cal-
culated triple point temperatures are also predicted to
increase for increasing chain lengths; an increase of 8%
is observed between the monomer system and a system
of chains of m ¼ 8 segments (see figure 1 and table 1). It
is important to point out that in our previous implemen-
tation of Wertheim’s TPT1 theory for Lennard-Jones
chains a decrease, instead of an increase, in the triple
point temperatures was observed [25] (in going from a
monomer system to a chain of m ¼ 8 segments the
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Figure 1. T�� projection of
the global (solid–liquid–
vapour) phase diagram of
fully-flexible chain mole-
cules of lengths m ¼ 1, 2,
4 and 8 as obtained from
the theoretical treatment
of this work. The phase
behaviour corresponding
to chains of infinite length
is also included. The solid
curves correspond to
m ¼ 1, the dotted curves
to m ¼ 2, the dashed
curves to m ¼ 4, the long-
dashed curves to m ¼ 8
and the dot-dashed curves
to m! 1. The inset
shows the region close to
the triple point.



decrease was about 7%). It is difficult at this stage to
assess which is the correct trend. Simulation results of
fully-flexible attractive chains are not available, and the
phase diagram and triple point temperatures of this type
of chain are unknown. One may suspect that the mean-
field treatment is too simple, and that the more sophis-
ticated Lennard-Jones treatment [25] should be qualita-
tively correct, but only simulation data can settle this
issue.
In figure 2 the phase diagrams of chains formed by

m ¼ 16, 32 and 64 monomers are presented. It is seen
that the fluid–solid coexistence densities rapidly reach an

asymptotic limit (note that the volume fractions at
melting and freezing are almost independent of m for
m > 16). The same is true for the solid coexistence den-
sities along the sublimation line and for the orthobaric
densities at low temperatures. However, it is also clear
from figure 2 that, at intermediate and high tempera-
tures, the vapour–liquid coexistence densities strongly
depend on m. In table 1 the critical and triple point
temperatures, as obtained from the theory of this
work, are shown together with the volume fractions of
the fluid and solid phases at the triple point. A number
of interesting conclusions can be noted from the data of
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Table 1. Critical and triple point reduced temperatures obtained using
Wertheim’s TPT1 for fully flexible hard chains together with an
attractive segment–segment mean-field term. The coexistence densities of
the liquid and solid phases at the triple point are given in terms of the
packing fractions, � l and �s, respectively. The properties corresponding
to the asymptotic m! 1 limit are also presented.

m T�c T�t � l �s T�t =T
�
c

1 0.094 360 0.044 060 0.470 164 0.572 547 0.466 935

2 0.143 920 0.046 120 0.494 469 0.596 665 0.320 456
4 0.204 952 0.047 252 0.505 484 0.609 241 0.230 552
8 0.273 078 0.047 878 0.510 642 0.615 542 0.175 327

16 0.342 580 0.048 210 0.513 129 0.618 691 0.140 726
32 0.408 230 0.048 383 0.514 349 0.620 261 0.118 519
64 0.466 200 0.048 470 0.514 950 0.621 050 0.103 968
1 0.666 667 0.048 560 0.515 553 0.621 831 0.072 840

Figure 2. T�� projection of
the global (solid–liquid–
vapour) phase diagram of
fully-flexible chain mole-
cules of lengths m ¼ 16,
32 and 64 with attractive
interactions described at
the mean-field level of
van der Waals. The phase
behaviour corresponding
to the monomer m ¼ 1
and to infinite length are
also included. The solid
curves correspond to
m ¼ 1, the dotted curves
to m ¼ 16, the dashed
curves to m ¼ 32, the
long-dashed curves to
m ¼ 64 and the dot-
dashed curves to m! 1.
The inset shows the region
close to the triple point.



table 1. It can be seen that the triple point temperature

in the case of m ¼ 64 is 10% larger than that of the

monomer (m ¼ 1). As mentioned, in our previous

work we estimated the triple point temperature of very

long LJ chains to be 7% lower than that of the

monomer. Although it is not clear whether the correct

trend corresponds to an increase or a decrease of the

triple point temperatures, all evidence suggests that the

triple point temperatures of very long chains formed by

tangent spheres are not further than 10% of the triple

point temperature of the monomer. In contrast with

this, it can be seen in table 1 that the critical temperature

of chains with m ¼ 64 segments is four times higher than
the critical temperature of the monomer (this means a

400% variation in the critical point temperature). In

summary, concerning models of fully flexible chain mol-

ecules, small variations of the triple point temperatures

are seen for varying chain lengths, while variations of

chain length dramatically affect the gas–liquid critical

point. We have been able to confirm these trends both

in our present model and in the case of flexible chains of

Lennard-Jones segments [25].

It is useful to consider at this stage the phase behav-

iour of chains of infinite length (m! 1). The existence
of asymptotic limits in the liquid–solid coexistence den-

sities of fully-flexible hard chains [23] and Lennard-

Jones chains [25] of infinite length has already been

suggested. The simplicity of our present model means

that it is possible to calculate explicitly the phase behav-

iour at m! 1, so that the asymptotic limit can be
readily known. Let us start by determining the critical

temperature in the limit of infinite chain length. Mac-

Dowell et al. [14] and Vega and MacDowell [45] have

shown that in Wertheim’s TPT1 the Boyle temperature

(the temperature at which the second virial coefficient is

zero) of an infinitely long polymer is equal to the Y
temperature of the system (the gas–liquid critical tem-

perature in the limit of infinite chain length). This is

equivalent to the behaviour observed in the Flory–Hug-

gins lattice theory [46], in which the critical temperature

of the infinitely long chain is also that where the second

virial coefficient vanishes. Following the expressions

presented in section 2, the second virial coefficient of a

fully flexible chain formed by hard-sphere monomers

with segment–segment attractive interactions treated at

the mean-field level of van der Waals is obtained as

B2ðTÞ ¼ lim
�!0

@Z
@�

� �
TN

¼ bm2 3
2
þ 5

2m
� �mf
kBT

� �� �
; ð8Þ

where b ¼ ðp=6Þ�3 is the hard-sphere volume. The Boyle
temperature of the system can be easily obtained as

B2ðTBoyleÞ ¼ 0, thus

T�Boyle ¼
kBTBoyle

�mf
¼ 2m
3mþ 5 ; ð9Þ

so that the Y temperature of the system is

Y� ¼ kBY
�mf

¼ 2
3
: ð10Þ

According to this then, when Wertheim’s TPT1 theory
for hard-sphere chains is combined with a segment–
segment mean-field term, the reduced critical tempera-
ture of the infinite chain is just 2=3.
Let us now analyse the possibility of determining the

asymptotic limits of the coexistence curves. Vega and
MacDowell have shown [23] that if the compressibility
factor and residual free energies are linear functions of
the number of monomer units m for a given monomer
density, the coexistence curves must reach an asymptotic
limit for large values of m. In such a case it is possible to
write the residual free energy and compressibility factors
as

A ¼ A1ð�;TÞ þ mA2ð�;TÞ ð11Þ

and

Z ¼ Z1ð�;TÞ þ mZ2ð�;TÞ; ð12Þ

where A1, A2, Z1 and Z2 depend only on � and T as
indicated. In the limit of infinite chain length (m! 1),
the phase equilibria conditions for coexistence between
phases I and II (PI ¼ PII and �I ¼ �II) can also be
written as [23]

�ðIÞZðIÞ
2 ð�ðIÞ;TÞ ¼ �ðIIÞZðIIÞ

2 ð�ðIIÞ;TÞ ð13Þ

and

AðIÞ
2 ð�ðIÞ;TÞ
kBT

þZðIÞ
2 ð�ðIÞ;TÞ ¼ A

ðIIÞ
2 ð�ðIIÞ;TÞ
kBT

þZðIIÞ
2 ð�ðIIÞ;TÞ:

ð14Þ

The solid–liquid phase equilibria in the limit of infinite
chain length can be obtained numerically from
equations (13) and (14) using an algebraic manipula-
tions program such as Maple [47]. Note that in the
derivation of equation (14) it has been assumed that
the coexistence densities of both phases are different
from zero (otherwise the ideal term as given by lnð�Þ
will appear in equation (14)).
In the case of the sublimation and orthobaric curves,

equation (14) cannot be used since the volume fraction
of the vapour phase goes to zero in the infinite-chain
limit, and hence, the ideal ln ð�Þ term cannot be
neglected. In this case a different approach is required.
The vapour pressures along the sublimation line are so
low that, instead of determining the coexistence curve,
the densities of the solid along the sublimation line can
be determined by calculating the zero-pressure densities
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of the solid phase. This amounts to setting to zero the
compressibility factor for each temperature and solving
numerically the corresponding value of the density. A
similar approach is often used in computer simulations,
where the solid densities along the sublimation curve are
obtained by performing isobaric–isothermal NpT simu-
lations at zero pressure [48]. In the limit m! 1 setting
to zero the compressibility factor corresponds to setting
to zero the Z2 term of the solid EOS (see equation (12))

ZðsolidÞ
2 ð�;TÞ ¼ 0: ð15Þ

Equation (15) can be solved analytically, giving

T� ¼ kBT
�mf

¼ � Zrefsolid � 1þ �ref
@ ln grefsolidð�Þ

@�ref

( )" #
; ð16Þ

where T� is the reduced temperature at which, for a
given packing fraction �, sublimation would occur in a
system of infinitely long chains. Zrefsolid is the compressi-
bility factor of the hard-sphere solid phase given by
Hall [43], and grefsolidð�Þ, as before, is the contact pair
correlation function obtained via the virial route from
Zrefsolid (see section 2).
In order to determine the liquid densities along

the orthobaric curve a similar approach can be used.
Liquid densities (at low temperatures) are often esti-
mated from zero-pressure NpT simulations. More
importantly, it has been shown that, in the case of infi-
nitely long chains, the pressure at the critical point,
which follows from Wertheim’s TPT1 approach, goes
asymptotically to zero [14, 45, 49–51], so that the ortho-
baric densities of the vapour–liquid coexistence curve
for very long chains are simply the zero-pressure densi-
ties. Thus,

ZðliquidÞ
2 ð�;TÞ ¼ 0 ð17Þ

for the entire gas–liquid envelope. This equation can be
solved analytically, and the temperature T�, for a given
packing fraction �, at which the liquid is in coexistence
with the vapour in the limit of infinite chain length, is
obtained as

T� ¼ kBT
�mf

¼ � Zrefliquid � 1þ �ref
@ ln grefliquidð�Þ

@�ref

( )" #
;

ð18Þ

where Zrefliquid is the compressibility factor of the hard-
sphere fluid given by the Carnahan–Starling equation of
state [42] and grefliquidð�Þ is the contact pair correlation
function obtained via the virial route from Zrefliquid (see
section 2). Using these equations the triple point tem-
perature of the infinitely long chain system is obtained
as T�t ¼ 0:048 560 (see table 1). In the case of a chain of
64 monomers (m ¼ 64), the triple point temperature is

T�t ¼ 0:048 470, which indicates that the asymptotic
limit is obtained for reasonably short finite chain

systems. In contrast with this (see table 1 and figure 2),

the calculated critical temperature for a chain of m ¼ 64
monomers is T�c ¼ 0:4642, while the Y temperature (the
critical temperature of the infinite chain) is 0.6666 (see

equation (10)).

A convenient way to study the asymptotic limits of

the phase behaviour of chain molecules is given by the

Schultz–Flory extrapolation diagrams [52]. These are

presented in figure 3. The triple point temperature of

the monomer system (m ¼ 1) is T�t ¼ 0:044 06, while
T�t ¼ 0:048 56 for m! 1, indicating that the triple
point temperature of an infinitely long chain is 1.1

times larger than that of its monomer system. In the

case of the vapour–liquid critical point temperatures a

Study of the solid–liquid–vapour phase equilibria of flexible chain molecules 455

Figure 3. Shultz–Flory diagrams for (a) the critical tempera-
ture T�c , (b) the triple temperature T

�
t and (c) the T

�
t =T

�
c

ratio, as functions of the chain length. The circles repre-
sent the predictions from Wertheim’s theory while the
dotted curves guide the eye.



much larger variation is observed. The critical tempera-
ture of the monomer fluid is T�c ¼ 0:094 360, which is
more than 7 times smaller than that of the infinite
chain, T�c ¼ 2=3. The increase of the critical temperature
of the system can be understood in terms of the incre-
ment associated with the attractive interactions between
the monomers that form the chains. More difficult to
explain is the small variation of the triple temperature
for increasing chain lengths. As can be seen in figure 1,
for a given increase in chain length, the increase in
packing fraction corresponding to the liquid phase in
coexistence with the vapour phase at low temperatures
is almost identical to the increase in the packing fraction
at freezing (solid–liquid). In this way the triple point
temperature remains practically unaffected. This expla-
nation, while not exact, provides a simple view as to
why the triple point temperature is approximately con-
stant.
An interesting property is the ratio between the triple

point and critical point temperatures. A linear depen-
dence is observed in the Schultz–Flory representation
of the T�t =T

�
c ratio for our flexible chain molecules

(figure 3 (c)). The asymptotic limit of this ratio is
T�t =T

�
c ! 0:072 840. Our previous, more sophisticated,

treatment involving LJ chains [25] suggested
T�t =T

�
c ¼ 0:14. Given the simple nature of the mean-

field approximation used here, quantitative agreement
between the two theoretical treatments cannot be
expected. It has already been noted [22, 33] that mean-
field treatments tend to underestimate the value of
T�t =T

�
c of spherical and diatomic fluids. It is likely that

the same occurs here. In the case of LJ chains, the cri-
tical temperature of infinitely long chains is about 3:5
higher than that of the monomer fluid [53]. The treat-
ment of this work, however, predicts a critical tempera-
ture 7 times higher for the infinitely long chain than for
the monomer. This might explain the factor of two dif-
ference between the value of T�t =T

�
c of this work and that

of our previous work on LJ chains. In any case, a value
of T�t =T

�
c of about 0.10 means that fully flexible tangent

chains present a liquid phase over an extremely wide
range of temperatures. For comparison, it is useful to
note that one of the liquids with the largest liquid regime
is propane, for which T�t =T

�
c is about 0.23 [54].

Once the global phase behaviour of chains has been
determined, a comparison of the theoretical trends and
experimental data can be carried out. It is found experi-
mentally that critical temperatures and triple point tem-
peratures tend to asymptotic finite limits for infinitely
long chains. The simple theory of this work is able to
capture and explain qualitatively these features. Unfor-
tunately, the theory presented here, as well as that of our
previous work, does not provide the correct asymptotic
values observed in real systems. For instance the typical

value of Tt=Tc for polyethylene [51, 54] is about 0:35–0:4
(there is large uncertainty in the precise value of the
critical temperature of polyethylene, which affects the
estimate of this ratio [51]). This is far from the value
Tt=Tc ¼ 0:07 of this work. In our opinion the large dis-
crepancy between both values is probably not due to a
failure of the theory, but rather to a failure of the model.
It would be useful to obtain simulation results of the
freezing properties of fully flexible tangent chains to
determine if the predictions of the theory concerning
Tt=Tc are correct. The fact that two different treatments
yield similar results for the Tt=Tc ratio, seem to indicate
that, in the case of fully-flexible chains of tangent sphe-
rical monomers, the ratio is always of the order of 0.10.
The discrepancy with experimental data is probably due
to the fact that fully flexible chain models are not ade-
quate to describe the solid phases of real chain molecules
such as n-alkanes or polyethylene. The extreme flex-
ibility of the chains allows the existence of a singular
solid with ordering of atoms (monomers) but disorder
of bonds, which is not seen experimentally. Such a solid
cannot be constructed using real polymers; overlap
between contiguous monomers, whose distance is less
than the sum of their van der Waals radii, and the exist-
ence of bond angles and torsional potentials make such
a high-density disordered solid an impossibility. When
these geometrical constraints are included in the model,
the only way of obtaining a highly-packed solid is to
generate an ordered solid, i.e. a solid with bond order.
Obviously, the chemical and geometrical details of the
molecule crucially determine the stability of the solid
phase.

4. Conclusions

The global (solid–liquid–vapour) phase behaviour of
fully flexible chains is obtained using Wertheim’s TPT1
to model the fluid and solid phase of fully-flexible chains
of tangent hard spheres with segment–segment mean-
field attractive interactions. In other words, we follow
the seminal approach of Longuet-Higgins and
Widom [31] for hard spheres and apply it to flexible
chains.
We have obtained the phase diagram of flexible chain

molecules of varying chain lengths. The main effect of
increasing the chain length is to increase the coexistence
packing fractions corresponding to the liquid and solid
phases, and to decrease the coexistence packing fraction
of the vapour phase. These changes become negligible
for the larger chain lengths and an asymptotic phase
behaviour is observed. For increasing chain lengths the
asymptotic limits are reached first in terms of the solid–
liquid and solid–gas transitions than for the gas–liquid
phase coexistence. The simplicity of the Helmholtz free
energy in the van der Waals approximation allows the
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study of the asymptotic behaviour of fully flexible chains
in a straightforward way. We have obtained analytically
the critical temperature of the infinite chain (i.e. the Y
temperature), as well as the coexistence densities of the
solid phase along the sublimation line, and those corre-
sponding to the liquid phase along the vapour–liquid
coexistence curve for chains of infinite length. The
solid–liquid coexistence has been obtained numerically
in this limit. The Y temperature of the system is found
to be 2=3, and the triple temperature of the infinite chain
is T�t ¼ 0:048 560, so that the Tt=Tc ratio is equal to
0:072 840; note that this corresponds to an enormous
fluid range. Although the model used is rather crude,
it captures some of the features observed in the phase
behaviour of real flexible molecules: the triple point tem-
perature reaches a finite value and the solid–fluid coex-
istence densities become similar for long chain
molecules. However, the large fluid range obtained sug-
gests that fully-flexible chain models are not adequate to
describe solid phases of real chain molecules. Neverthe-
less, we have been able to show that a fundamental
understanding of the global phase diagram of long flex-
ible chain molecules can be obtained by using the well-
known properties of hard-sphere monomer systems in
the fluid and solid phases.
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