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The global phase diagranti.e., vapor—liquid and fluid—solid equilibriumof two-center
Lennard-Jone$2CLJ model molecules of bond length= o has been determined by computer
simulation. The vapor-liquid equilibrium conditions are obtained using the Gibbs ensemble Monte
Carlo method and by performing isobaric-isothermal NPT calculations at zero pressure. In the case
of the solid phase, two close-packed solid structures are considered: In the first structure, the
molecules are located in layers and all molecular axes point in the same direction; and in the second
structure, the atoms form a close-packed arrangement but the molecular axes of the diatomic
molecules have random orientations. It is shown that at the vapor—liquid—solid triple-point
temperature, the orientationally disordered solid is the stable structure for the solid phase of this
model. The vapor-liquid-disordered solid triple-point temperature of the 2CLJ model, with bond
lengthL=o, is located aff* =0.650/4). This is very close to the triple-point temperature of the
Lennard-Jones monomer systeff* = 0.687). At very low temperatures, the ordered solid is the
stable phase. The vapor-ordered solid-disordered solid triple point is situal&d=2.282. The
simulation data are compared to Wertheim’s first-order thermodynamic perturbation (Médrs)

for the fluid and solid phases. It is found that Wertheim’s TPT1 not only provides an accurate
description of the equation of state in both the fluid and solid phases, but also provides accurate
values of the free energies. The prediction of Wertheim’s TPT1 for the global phase diagram of the
2CLJ model shows excellent agreement with the simulation results, illustrating the possibility of
using Wertheim’s perturbation theory to determine not only the vapor-liquid equilibria but also the
global phase diagram of simple chain model molecules2@®3 American Institute of Physics.
[DOI: 10.1063/1.1572811

I. INTRODUCTION hard charged spheré$;’® Gay—Berne molecule$;!” and
simple point charge model water molecutés.

Since the initial computer simulations in the 1950's, a  The calculation of the complete phase diagram of a pro-
considerable amount of work has been devoted to the deteposed model system can now be carried out within a reason-
mination of the phase diagrams of model molecular systemsible amount of time due to the increased speed of modern
The calculation, by means of computer simulation, of thecomputers. However, brute force computational power is not
phase diagrams of the hard-spHereand Lennard-Jones the only key to the success of simulation studies; much credit
monomer systemsave played an important role in improv- IS dué to the development of simulation techniques for the
ing our understanding of the states of matter. In the |asggterm|nat|on of phase equilibria. These technlques_are the
twenty years, the phase diagrams of a number of model syg'bbs ensemble Monte Caffband the NPT-test particle

tems (including solid and liquid-crystalline phagefave methods’ which are very useful in determining the vapor—

b btained by Usi ter simulation. F | liquid equilibria, the Gibbs—Duhem integration mettfod?
eer.1 obtained Dy using F:ompu er simuia |on.. or. €XaMPI&y hich becomes an invaluable tool when determining fluid—
studies have been carried out for hard ellipsdidsard

, 5 & 2-9 solid equilibria, the Rahman—Parrinello technique, essential
spherocylinders,hard cut sphereShard dumbbells,™ qua-  j, the study of solid phaséd?*and Einstein-crystal calcu-

H H 1,12
drupolar hard dumbbelf®, fully flexible hard chains; lations, which provide the free energies of solid ph&séds.
general approach to the determination of global phase dia-
dElectronic mail: cvega@eucmos.sim.ucm.es grams by computer simulation would entail:
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(@ Obtaining the vapor—liquid equilibria using the Gibbs chains>* and have been able to show that the approach pro-
ensemble Monte Carlo techniquer the NPT+test vides a good description of the EOS and good results for the
particle methogl and determining the orthobaric den- internal energy of the solid phase of LJ tangent dint2€LJ
sities at low pressures by carrying out NPT simulationswith L* =1). It is important to note that Wertheim’s TPT1
at zero pressure. can only be used to describe chains formed by “tangent”

(b) Determining the equation of stat&O9 of the solid  spheredi.e., those with reduced bond length$=1). Since
for one isotherm using the Rahman—Parrinello tech\Wertheim’s TPT1 can provide an accurate description of the
nique (or one of its Monte Carlo counterpartsand EOS of the 2CLJ model with* =1 in the fluid and solid
performing free-energy calculations in the equilibrium phases, it is natural to wonder whether it could be used to

unit cell using Einstein-crystal calculations. describe the global phase diagram of the 2CLJ model. It is
(c) Performing a Gibbs—Duhem integration to obtain theimportant to mention at this stage that an accurate EOS for
complete fluid—solid equilibrium curve. the solid phase does not necessarily guarantee the correct

prediction of the fluid—solid equilibria, as the theoretical ap-

These are the steps that have been followed in the determproach must also provide good estimates for the free energies
nation of the global phase diagram of model two-centeiin the solid phase. In this work, we determine the phase
Lennard-Jone§2CLJ) molecules studied in this work. diagram of the 2CLJ moddwith L* =1) using computer

Following the success of the Lennard-Joried) inter-  simulations, and we compare the phase diagram obtained in
molecular potential as a model for atomic fluids, one of thethis way with that obtained using Wertheim’s TPT1.
simplest molecular models that can be proposed is the 2CLJ. The study of the solid phases of 2CLJ model molecules
This model consists of two LJ centers with potential paramimplies that a number of structures should be considered.
eterse and o separated from one another by a reduced bondVhile a system of LJ monomers freezes into a face-centered-
length of L*=L/o. The vapor-liquid equilibria of 2CLJ cubic (fcc) close-packed arrangement, in the case of 2CLJ
model molecules with different values bf has been stud- molecules withL* =1, it is possible to construct, based on
ied by a number of authoS;*°and has been the subject of the closed-packed configuration of the LJ monomer solid, a
interest in a large number of theoretical stud®s® Some-  number of distinct solid structures. Vega, Paras, and
what surprisingly, the fluid—solid equilibria has not beenMonsorf have presented several structures of this type for
considered in detail, the only exception being the work ofhard diatomic(hard dumbbejl molecules; each of the ar-
Lisal and VaceR® who have determined the global phaserangements are possible configurations for 2CLJ molecules.
diagram (vapor-liquid—solig)l for a 2CLJ system with In these structures, the molecules are located in layers, and
L*=0.67 by molecular-dynamics computer simulations ancthe molecular axes of all the molecules in a layer point in the
using the Gibbs—Duhem integration method. same direction. In the particular case of the so-called closed-

In terms of theoretical developments in the field of per-packed 1(CPJ) structure, the molecular axes of each of the
turbation theory and equations of state of complex fluids, inmolecules in each of the layers point in the same direction.
the 1980's Wertheirf{~* presented a series of seminal pa-In the present work, the CP1 configuration is considered as
pers developing a theory for associating fluids. It has sincene of the possible solid structures of the 2CLJ tangent
been shown that when the association strength becomes imodel. This CP1 solid structure will be denoted as the or-
finitely strong, chains can be formed from a fluid of associ-dered solid. It was found in Ref. 8 that the differences be-
ating monomeré:*?thus, an EOS for a chain composed of tween the free energies of different ordered solid structures
freely jointed tangent monomers can be derived solely usingvere small, indicating that the CP1 is a good representative
the thermodynamic information of the monomer referenceof these ordered structures. However, it is unlikely that or-
fluid. In the simplest implementation of the theory, known asdered structures correspond to the stable solid phase for the
first-order thermodynamic perturbation theofJPT1), the  2CLJ tangent model. Wojciechowski, and co-worR&rd
only information required to build an approximate EOS for were the first to suggest that fo =1, it is possible to build
the chain fluid is the EOS and the pair correlation function ofa solid structure where the atoms follow an fcc close-packed
the monomer fluid at contact. Although Wertheim’s formal- arrangement, but where the bonds are randomly located
ism was originally aimed at the study of hard chains, it waswithin the solid, with no long-range orientational order be-
soon realized that it could also be applied to LJ ch&fnd’  tween the bond vectors. We also consider this structure in

Recently, we have explored the possibility of furtheringthis work and denote it the disordered solid. In fact,
the usefulness of Wertheim’s TPT1 by applying it to the solidWojciechowskiet al>>°% have shown that the stable solid
phase. Vega and MacDow&llhave shown that Wertheim’s structure of tangent hard-disk dimers in two dimensions is
TPT1 can be employed in the treatment of the solid phase fdiormed by a close-packed arrangement of atoms with a dis-
freely jointed hard-sphere chain molecules, obtaining excelerdered arrangement of bonds. The same idea holds true for
lent agreement with the simulation results of Malanoski anchard chains in three dimensiotisand one may expect that
Monson*! This work has been extended by Blesal**to  the same would occur for a three-dimensional 2CLJ tangent
deal with fully flexible hard-chain molecules with segment— dimer. In this work, it will be shown that the disordered solid
segment attractive interactions treated at the mean-field levéd the stable solid structure for most thermodynamic condi-
of van der Waals. Similar results have also been obtained itions (with the exception of very low temperatujes
two dimensions® Encouraged by these findings, we have This article is organized as follows: In Sec. Il, the exten-
extended Wertheim’s TPT1 to model the solid phase of LXkion of Wertheim’s theory to model solid phases of LJ chains
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is described, in Sec. lll, we provide details of the computemwhere we have defined the compressibility factor of the ref-
simulations performed in this work, in Sec. IV, the results areerence monomer system %"= P/ (p"®kzT), with P be-

presented, and in Sec. V, conclusions are discussed. ing the pressure. The corresponding residual part of the in-
ternal energyJ is given by
U B Uref . I ¢9|ngrEf(O') 3
II. BRIEF DESCRIPTION OF WERTHEIM'S NkgT "Nkt (M~ DT =7 )

PERTURBATION THEORY )
We denote Egs(1)—(3) as Wertheim’s TPT1 theory.

It is now well known that Wertheim’s TPT1 can be used It is useful to note here that the arguments used to derive
to describe the properties of LJ chains in the fluid phése. Egs.(1)—(3) make no special mention of the actual nature of
This was first suggested by Chapnfdrand later confirmed the phase consideré®t®’*%thus, this approach can be used
by Johnsoret al#® The possibility of extending Wertheim's to describe both fluid and solid phases. In such a case, all
TPT1 to treat solid phases has only recently beenhat is needed in order to obtain a unified theory for the
explored?®*%*1|t has been shown that an accurate descripglobal phase equilibria of chain molecules is the residual free
tion of the EOS and internal energies of the 2CLJ tangenénergy, compressibility factor, and pair correlation function
model in the solid phase can be obtained following the ideasf the monomer system both in the fluid and solid phases.
of the TPT1 theory of Wertheim. Details of the extension of Johnsonet al#**° have provided values of the free energy
Wertheim’'s TPT1 to model solid phases of LJ chains haveand structural properties.e., g"'(o)] for the monomer LJ
been given elsewheré;here, we provide only an overview fluid. In this work, we follow their implementation of the

of the main features of the approach. TPT1 of Wertheim to model the fluid phases of 2CLJ mol-
Let us assume that we have a certain numiR&f of  ecules.
spherical monomer particles within a volurkleat tempera- Van der Hoe®® has recently presented an analytical ex-

ture T. These spherical particles interact through a sphericgbression for the free energy of the LJ monomer solid ob-
pair potentialu™/(r); in this work, the pair potential/(r) tained by fitting the most recent simulation results for the
is the LJ potential with parametetsand e. We denote this  solid phase of this model to a simple functional expression.
fluid as the reference fluid, and label its properties with thewe shall use his expression in this work. Valuesgtf( )
superscript ref. Let us also assume that in another containésr the LJ monomer solid, which are also required in the
of volume V at temperaturel, we haveN=N"/m fully =~ TPT1 approach, were obtained by computer simulation in a
flexible chains oim monomers each. By fully flexible chains, previous work! for a number of temperatures and densities.
we mean chains o monomers with fixed bond lengths The simulations results fa/(o) were fitted to an empirical
between monomers. =¢, and no other constraint§.e.,  expression of the same polynomial form than that proposed
there is no restriction of either the bonding angles or of theby Johnsoret al*® for the fluid phase; the coefficients of the
torsional angles Each monomer of a given chain interacts polynomial can be found in Ref. 51.

with all the other monomers in the system, either in the same

molecule, or in other_mo_le_cules, with _the onl_y eX(_:eption o_fm_ SIMULATION DETAILS

the monomer/s to which it is bonded, interacting via the pair

potentialu™/(r). The chain system described so far will be In this work, we consider diatomic LJ model molecules
denoted as the chain fluid. It follows from Wertheim’s TPT1 formed by two identical LJ sitemonomer$ with a bond
that the free energ of the chain model system can be distancelL = o, whereo is the diameter of the LJ monomer

written as (i.e., the monomers are tangentialWe shall refer to the
of model molecules as 2CLJ tangent. The pair interaction be-
A Alesidual tween a pair of molecules is given by

_ 3 _ _ ref,
NikgT -~ M(Po) ~ 1+ Mg 3~ (m=1)iny™(o), i—2 =2

12 6

@ u12=3 > 4e (ri) —(ri)
wherekg is Boltzmann’s constant, ang=N/V the molecu- e b .
lar number density. In Eg(1), we have set the de Broglie wherer;; is the distance between sitmonomey i of mol-
thermal wavelength ter. This expression indicates that the ecule 1 and sit¢ of molecule 2. In order to determine the
free energy of the chain may be obtained from a knowledgglobal phase diagram of the 2CLJ tangent molecules, we
of the residual free energy of the reference flajl, ,and  have used various simulation techniques. Before describing
the background pair correlation functigff(o) of the refer-  the details of each technique, it is useful to note that in all the
ence fluid at the bonding distance.>>*® As y(r)  simulations performed, the site—site LJ pair potential was
=exdu(r)/ksT]g(r), and since in the case of the LJ potential truncated atr.=2.50, and long-range corrections were
model the pair potential is zero at= o, for this particular added to all the computed thermodynamic propertieter-
choice of bond lengthy(o)=g(o). Replacingy(c) by  nal energy, pressure, and chemical potentsl assuming
g(o) in Eq. (1), and differentiating the free energy with re- that the site—site pair correlation function is equal to unity

: 4

spect to density, the EOS is given by beyond the cutoff® A cycle is defined as a trial move per
o particle, and a tria}l volume change. !n the case of the Gibbs
Z=mZ*— (m—1) 1+p,ef‘9 Ing™(o) @) ensemble simulations, a cycle also includies attempts to
ap'® ' exchange patrticles between the boxes. Throughout this work,
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TABLE |. Vapor-liquid coexistence properties for the 2CLJ model with=1 as obtained from Gibbs en-
semble Monte Carlo simulations for systems containing initially-5600 moleculesp* indicates the reduced
number density of moleculgs* =N/Va2, U* is the residual internal energy per particle in unitsepthe
pressureP* is in units of e/, and the chemical potentigl* is in units of e. The reported pressures and
chemical potentials refer to values in the vapor ph#sese values are equal to the corresponding values in the
liquid phase within the statistical uncertainjies

T* oy i Uy Ui p* w*

1.76 0.082258) 0.2116159  —2.260(151) —5.07(32) 0.072@9) ~6.30(2)
1.75 0.072946) 02184147  —2.034(124) —5.22(31) 0.0686.8) -6.32(3)
1.74 0.06771) 0.2225116  —1.902(171) —5.33(24) 0.06584) ~6.33(3)
1.72 0.064843) 0.241256) —1.840(110) —5.75(12) 0.06280) —6.31(2)
1.70 0.054831) 0.247263) —~1.583(87)  —5.89(14) 0.0564.9) ~6.34(2)
1.65 0.042128) 0.265850) —1.276(85)  —6.35(12) 0.046@7) -6.37(3)
1.60 0.03222) 0.281234) —-1.010(68)  —6.75(8) 0.037217) —6.42(4)
1.55 0.026214) 0.297228) —-0.849(49)  —7.17(7) 0.0308L2) —6.44(3)
1.50 0.020812) 0.309719) —~0.689(38)  —7.51(5) 0.0248L0) —6.49(4)
1.45 0.015810) 0.322425) —~0.549(37)  —7.87(6) 0.018010) —6.54(5)
1.40 0.0119%4)  0.333420) -0.431(22)  —8.19(5) 0.0143®5  —6.61(4)
1.35 0.0094@5  0.344G21) ~0.355(15)  —8.51(6) 0.011185  —6.63(3)
1.30 0.006 7845  0.353417) —~0.263(19)  —8.81(5) 0.0079617)  —6.74(6)
1.20 0.0035814)  0.372518) —0.149(7) —9.39(5) 0.003985  —6.92(4)
1.10 0.001 56) 0.389416) —0.073(3) —9.96(5) 0.001 68) ~7.19(3)
1.00 0.000 6(8) 0.406112) —-0.032(2)  —10.50(4) 0.000 5@) —7.45(4)

we use reduced units, so that* =T/(elkg), p*=po>  (of the order of 1.%10 ° at T*=1.0) and, therefore, the
=(N/V)a?3, P*=P/(elo®), andU* =U/(Ne). Gibbs ensemble technique was found impracticable for tem-
peraturesT* <1.0. As an(approximate alternative, we per-
formed a series of constant-pressure NPT Monte Carlo simu-
The vapor-liquid equilibria of the 2CLJ model has al- lations of the liquid phase &* =0 for temperatures in the
ready been considered by a number of authors. Using Gibheinge T*<1.0. Given that the coexistence pressureTl#t
ensemble simulations, Dubegt al?® have obtained the =1.0 is P*=0.000593), this procedure is expected to
vapor-liquid equilibria of the 2CLJ model system for severalyield reliable estimates of the liquid densities at coexistence.
bond lengths, including-* =1. More recently, Stolet al?®  Obviously, the estimates improve @& decreases. The cor-
have studied the vapor-liquid transitions for this model ustesponding results are included in Table II. It is important to
ing the NPT+ test particle method. In the latter work, special note that even in the most unfavorable ca$é £1.0), the
emphasis was placed on the accurate determination of thesulting liquid density obtained with these NPT simulations
critical properties of the system; however, in order to com{ p} =0.4058(14] compares well with the valuep}
pare this with our theoretical calculations, which incorporate=0.4061(12) obtained using the Gibbs ensemble technique.
the description of the solid phase as well as the fluid phases, As well as determining the location of the triple point, it
we also have an interest in locating the triple point of the
2CLJ model. In this way, computer simulation data of the
vapor-liquid equilibria at lower temperatures than reportedrasLE I1. Density p* and residual internal energper particlg U* in the

A. Vapor-liquid equilibria

previously is needed. liquid phase as obtained from NPT Monte Carlo simulations at zero pressure
We have obtained the vapor—liquid properties of thein a system of 500 2CLJ molecules wittf =1.
2CLJ model fluid withL* =1 using the standard Gibbs en- T o U
semble Monte Carlo simulation technique. At each tempera-
ture T*, an initial configuration is generated by first equili- 1.00 0.4058L4) —10.50(5)
brating two subsystem@ach containing 500 moleculeat 8'32 g'igﬁg :3'32233
the givenT*, and with initial vapor and liquid densities 0.85 0.429612) ~11.33(4)
close to the expected coexistence values. Constant-volume  0.80 0.437212) —11.61(4)
NVT Monte Carlo simulations are carried out in this equili- 0.75 0.445113) —11.90(5)
bration stage, which consisted of approximately 10 000— 0.70 0.452714) —12.19(5)
20000 cycles. The resulting configurations are subsequently 8'22 8'22(7)3(2); :E'igggg
used as starting configurations for the Gibbs ensemble run, g4 0.463012) _12.57(5)
which consisted of 50000 equilibration cycles and 50 000 0.62 0.466213) ~12.70(5)
cycles for collecting averages. The coexistence densities, in- 0.6 0.469713) —12.82(5)
ternal energies, pressures, and chemical potentials for each of 0.8 0.472612) —12.94(4)
the temperatures considered are presented in Table I. 8'22 g'gggz :gggg;
At low temperatures, the probability of transferring par- 0.52 0.479011) —13.23(5)

ticles between the two subsystems becomes extremely low
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TABLE lll. Helmholtz free energie#\ for 2CLJ model systems with* =1 at two state point3*, p* for two
solid structures. The simulation data were obtained from Einstein-crystal calculafigas for both the dis-
ordered solid and for the ordered solid labeled as QR1Ref. 8. For the disordered solid, the entropic
contribution due to the degeneracy of the fcc lattitaken from Ref. 62is added. Also included are the
corresponding values obtained from Wertheim's TPT1 theory.

T p* Method Structure Agc/(NkgT) Degeneracy  A/(NkgT)
1 0.5490 Simulation Disordered solid —-4.17(3) —1.5194 —5.69(3)
1 0.5490 Theory Disordered solid —5.69
1 0.5490  Simulation Ordered CP1 solid —4.76(3) 0 —4.76(3)
2 0.580 Simulation Disordered solid 3(23 —1.5194 1.612)
2 0.580 Theory Disordered solid 1.65

is useful to consider the location of the critical point result-sphere model at close packing can be used as a good starting
ing from our Gibbs ensemble calculations. The critical tem-point). After generating initial structures at the close-packing
peratureT, and densityp. are obtained using the simulation density, these were expanded to lower densities by perform-
results for the vapor and liquid coexistence densities and themg NPT simulations at slowly decreasing pressures. A typi-

relations cal run of the solid phase involved 30000 equilibration
Pt —p* =A(TF—T*)?, 5) cycles followed by 30000 cycles for obtaining equilibrium
properties.
and In order to determine the fluid—solid equilibrium, the
g o free energy of the fluid and solid phases must be calculated.
u:B+CT*, (6)  The residual free energy of the fluid pha&€® can be ob-
2 tained by thermodynamic integration,
wherepy andp; are the liquid and vapor coexistence den-  ares, T) o (Z(p,T')—1) T U
sities at temperatur€*, A, B, andC are constants, anflis —f p—f ——dT. (8
N kBT 0 P T N kBT

the corresponding critical exponent; a val@e 1/3 was as-
sumed here. The critical pressupé is obtained using the Following Eq.(8), the free energies of the fluid phase at a
relation temperaturd* =2 (supercritical temperatuyevere obtained
InP* =a+bT @) via integration of the compressibility factor along the corre-
' sponding isotherm, while the free energies of the fluid phase
whereP* is the saturation pressure at temperaflite anda at T*=1 were obtained from those &t*=2 integrating

andb are constants. through isochores. In the case of the solid phase, the free
energies can be calculated using the Einstein-crystal
B. The solid phases methodology?® The method used here is quite similar to the

one described in previous works®%1 Translational and ori-
entational springs are used, with a maximum valyg,
=20000 for both springéote, however, that the units are of
dkBT/a2 for the translational spring and &T for the orien-
tational spring. The free-energy calculations were performed
at T* =1 using ten different values of in the range &\

The simulation details regarding the solid phase ar
similar to those of previous works>**and hence we discuss
here only the main features.

As mentioned in Sec. | we have considered two soli
structures: An ordered CP1 structiiend a disordered struc-
ture. In the case of the CP1 solid structules 256 dimer
molecules are arranged in four layers with 64 2CLJ mol—g}‘max and, as_before, the length o_f_the_runs for the free-
ecules in each layer. Since the solid CP1 structure does n&{1€"9Y calculations was 30 000 equilibration cyei@8 000 .
have cubic symmetry the Rahman—Parrirélimodification averaging CVC'?‘S- In the case of the CP1 st_rgct_ure, t IS Im-
of the constant-pressure NPT Monte Carlo technique is useaortant_ to ment|o.n that the shapg of the equilibrium unit cell
in order to allow for nonisotropic changes in the simulation@t & given density is slightly different from that of close

box shapé&? On the other hand, in the case of the disordereooaCking; the free-energy calculations were carried out using

structure, an fcc close-packed arrangement of atoms with th e equilibrium unit cell at each density. The free energy for
molecular bonds randomly distribufédis generated. The the disordered structures was evaluated by considering the

number of molecules in the disordered solid Was 432 average of two independent disordered configurations. The

Two different random structures were generated and the ré_esults of the free-energy calculations for_ both_ the CP1 struc-
sults reported here correspond to the average obtained ovite and the disordered structures are given in Table |II.
those different configurations. Since the distribution of bonds

in the solid phase is isotropic, an isotropic scaling of the
volume is performed in these NPT simulations.

The simulations were started at very high pressures Once the free energies of the fluid and solid phases are
where the density is close to the close-packing lind true  known at a fixed temperatureTf{ =1, in this work), the
close-packing can be defined when a soft potential such dtiid—solid equilibrium can be determined by equating the
the LJ is used, but the reduced number density of the hargsressures and chemical potentials of both phases. Results of

C. Gibbs—Duhem simulations

Downloaded 08 Oct 2003 to 147.96.5.37. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 118, No. 23, 15 June 2003 Phase diagram of a two-center Lennard-Jones model 10701

TABLE IV. Fluid—solid coexistence properties obtained using the Gibbs—A simulation is then carried out at temperatdrgand pres-

Duhem integration scheme for the 2CLJ model system wWith=1. The sureP, 4, and the right-hand side of E(ﬂ.O) (i.e., the func-
solid structure corresponds to that of the disordered solid. The initial equi-. N L
librium point for the Gibbs—Duhem integration was a statdFat1 and tion flx]) is evaluated. A second guess B[ IS given by
P*=4.37. Two Gibbs—Duhem integration series were performed starting P, =P, quAB”o"’ f1 1)/2)_ (12
from the state af* =1, the first one was extended to higher temperatures ’ '

and the second one to lower temperatures. The equilibrium staté=ag A simulation at temperaturé, and pressur@l'2 is carried
with the asterisk W*as obtiined from the Einstein-crystal calculations Preput, and the right-hand side of quo) (i.e., the function
sented in Table Illpf andp? are the fluid and solid densities at fluid—solid f1,2) evaluated. Similarly, a third guess &y, is

coexistence, respectively.

Pl’3:POquAﬁ(fo+f1’2)/2). (13)
2.1053 20.3695 0.5393 0.5835 1.0000 4.3700 0.4871 0.5354F|nalg/_, ttheSt.'ma;? of ;he coexistence pressBfecorre-
2.0000 187356 0.5348 0.5798 0.9804 4.1131 0.4855 0.5342°P0NdING 101 IS obtained as
20000 185100 0.5347 05784 09615 38667 04839 05332 p _(p, 4P, /2. (14)
1.9048 17.2771 05311 05761 009434 3.6311 0.4827 0.5319 : *
18182 159662 05278 0.5728 0.9259 3.4053 0.4816 0.5314The length of the runs at eadP,,, P;,, and P;5 were

i'ggzi ig-;ggg 8-?3‘1‘2 g-gggg g-gggé g-;ggg 8-3382 8-g§g;typically of 5000 equilibration cycles and 5000 averaging
16000 127240 05182 085637 08772 27795 04786 0.ssCYClES. Once the coexistence pressure for a temperature is
15385 118276 0.5154 05613 08621 2.5868 04773 0.5275d€termined, runs of 3006630 000 cycles are used to deter-
14815 110048 0.5125 05587 0.8475 24016 0.4768 0.5268mine the equilibrium properties at coexistence. We have typi-
14286 102476 0.5104 05565 0.8333 22235 0.4759 0.5258cally used a stepA3* =A3e=0.02 in the integration. The

13793 95486 05075 05542 08197 2.0514 0.4746 0.525049qrithm was checked by implementing this Gibbs—Duhem
i:gggz 2:2832 8:?833 8:2258 8:3823 i:?g:g g:i;gg gzgggintegrat_ion scheme to determine the fluid—solid equilibrium
12500  7.7399 05012 0.5480 0.7812 15721 0.4720 0.5227Properties of a LJ monomer system; excellent agreement
1.2121 7.2180 0.4990 0.5461 0.7692 1.4233 0.4712 0.5217with previous results obtained by other authors was
11765  6.7299 04970 0.5444 0.7576 1.2795 0.4705 0.5212found>®®1We estimate the uncertainty of our Gibbs—Duhem
11429 62743 04948 05427 07463 11401 0.4690 0.5204gimy|ation results to be approximately 0.5%.

D e e e, 4ty 5tz Inthe implmentaton of e Gibbs-Duhem method, e
1.0526 5.0650 0.4897 0.5380 0.7143 0.7492 0.4665 0_5185have carried out |SOtrOpIC NPT simulations for the fluid
1.0256  4.7082 0.4882 0.5364 0.7042 0.6269 0.4655 0.5176phase, isotropic NPT simulations for the disordered solid
1.0000  4.3700 0.4871 0.5354 0.6944 0.5084 0.4656 0.5172structure, and nonisotropic NPT simulations for the ordered
0.6849 0.3930 0.4637 0.5166 gg|id structure. The Gibbs—Duhem calculations were run on
8:222; g:igg’ 8:223; 8:2122 a dual Athlon XP2000 and a parallel version of the program
0.6579 0.0671 04621 05150 Was developed usingPENMR In this way, the Gibbs—
0.6494 0.0003 0.4617 0.5147 Duhem simulations were almost twice as fast as those under-

taken on a single processor.

™ P L S L

_ _ o _ _IV. RESULTS
the fluid—solid equilibrium at this temperature are reported in

Table IV. In order to obtain the complete fluid—solid coex- ~ First, we examine the vapor—liquid equilibria. In Table |,
istence curve in a range of temperatures, the Gibbs—Duhethe results of the vapor-liquid Gibbs ensemble simulations

integration technique can be used. We have used a modifié®" be seen and, in Table I, the NPT simulations at zero
version of the Clausius equation pressure are presented. The estimated critical properties of

the 2CLJ fluid obtained using the computer simulation data

(d_P :ﬂ ) in this work are Ty =1.7847), ps=0.1443), and P}
dT) TAv’ =0.103(13). These results are in good agreement with the
which can be written as previous estimates of Dubest al?® (T* =1.781), andp?
=0.1491)). In Figs. 1 and 2, the vapor-liquid coexistence
InP\  Ah _¢ 10 densities and the vapor pressure curve obtained from our
dg)~  BPAv (10 simulations and from Wertheim's TPT1 are presented, re-

spectively. The results of Dubet al?® are also included for

comparison. As expected, Wertheim’s TPT1 provides a very
Sbod description of the vapor—liquid coexistence properties
(densities and pressupesf the 2CLJ model fluid.

Let us now focus on the properties of the solid phase. In
Sec. Il, we provided the main expressions of the EOS of the
©CLI model in the solid phase following the TPT1 frame-
work of Wertheim; the equation was presented in a previous
work > and additional details can be found therein. The free
energies of the solid phases obtained by computer simulation
P11=PoexpABfy). (11 in this work are presented in Table Ill. As mentioned earlier,

whereB=1/T, andAh andAv are the enthalpy and volume
changes per particle between the fluid and solid phases, r
spectively. The integration of Eq10) requires an initial co-
existence pointhere, the fluid—solid equilibrium results at
T*=1 are usej] a simple trapezoidal rule can then be used
with a stepAB. One assumes that for a certain temperatur
Ty, the coexistence pressuiRg is known, and that we wish
to calculate the coexistence pressie for a temperature
T,. An initial guess ofP; is estimated as
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FIG. 1. Vapor-liquid coexistence curv@{p representationfor the 2CLJ FIG. 3. T—p representation of the global phase diagrancluding vapor,
model system with.* =1 from computer simulatiosymbols and predic-  liquid, and solid phasggor the 2CLJ model system with* =1 from simu-

tions from Wertheim's TPT1(curve. The open circles correspond to the lation results (symbols and predictions from Wertheim's TPT{solid

Gibbs ensemble Monte Carlo simulation results obtained in this work, thecurvesg. The closed squares correspond to the triple-point properties esti-
squares to the Gibbs ensemble data obtained by other altieerfef. 2§ mated from simulation, the “up” triangles to the fluid—solid coexistence
the diamonds to the liquid densities obtained in this work using NPT Montedata obtained from Gibbs—Duhem simulations, and the inverted triangles to
Carlo simulations at zero pressure, and the closed circle to the critical poirthe vapor—solid coexistence data obtained from NPT simulations at zero
[estimated by the scaling relations given by E@8.and(6)]. pressure. The remaining symbols are the same as those in previous figures.

in the case of the disordered solid structure, the results co#“?tt'c_e' the_ estimation of the ”Ef”_‘ber of ways Of arranging the
onfiguration is known as the “dimer problem.” Na§tero-

respond to the average of two independent disordered coit: d ¢ timate of the d " -
figurations. In Table lll, the calculated free energies usind)(/jssk?rn chlirgfgjs :;n_aelo ]? eg_?n;ram 3? ;ogy gving
Wertheim’'s TPT1 have also been included. It can be seeﬁ‘ (NkgT)=—1. - LIS clear from fable at, for a

that the theoretical approach provides accurate predictions hventgetn&ft)f[,hthe f[jee N dnecrg)i of t|h§ dlsordgredﬂf Ot“?hls Iczwl;alr
the free energy of the disordered solid. It is important to note an that ot the ordere solid, meaning that the stable

here that, in order to obtain the free energy of the disordere olid strugture for the 2CLJ model correqunds tq the dls_or-
solid, the contribution of the degeneracy entropy must b ered solid and not to the ordered CP1 solid. This was first

added to the free energy obtained from the Einstein—crystzfl\r/lown in a two-dimensional hard-disk dimer system by

i H .52,53 i
calculations. This is due to the fact that this method provide OJCI'eC_hOWf]k'Izt alt., _outrhresults |n(:|cat;=.hthat dt_he same |
the free energy associated with a given solid configuratio onclusion “holds trué in the case of a three-dimensiona

and, therefore, the degeneracy entropy must be added to 4 .QL‘] solid. It is important to note, however, thestablg

count for the number of ways of organizing a disordere isordered structures are not possible for value *ofsig-

o . : N
solid configuration. In the case of dimer molecules on an fcénflcantly d|ffe_rent from unity. For values dI less than 1,
the stable solid phase is expected to exhibit an ordered struc-

ture; i.e., the singular nature of the model with=1 makes
the existence of the disordered solid possible.

Once the free energy of the solid is known, it is possible
to determine the fluid—solid equilibrium for a given tempera-
ture. The equilibrium pressure corresponding to a tempera-
/ tureT* =1 is found to beP* =4.37. This coexistence point
/ can then be used as the starting point for the Gibbs—Duhem
integration. Representative coexistence points obtained using
the Gibbs—Duhem integration method are presented in Table
IV. In Fig. 3, the temperature—density projection of the glo-

/ bal (solid-liquid—vapoy phase diagram for a 2CLJ model

0.06

P

0.03

FIG. 2. Vapor pressure curvePT representationfor the 2CLJ model
system withL* =1 from computer simulatiofsymbolg and predictions

0 1
0.5 1 15 2

from Wertheim’s TPT1(curve). See Fig. 1 for details of the symbols.

system is shown, and in Fig. 4, the pressure—temperature
projection is presented. The triple-point temperature, esti-
mated using the simulation results of this work, is found to
be Ty =0.65Q4). This temperature is found both by ex-
trapolating the fluid—solid coexistence pressure to Z&re
pressure at the triple point is expected to be very close to
zero, and by finding the temperature at which the density of
the fluid at zero pressure becomes identical to that of the
fluid at the fluid—solid coexistence curve. The corresponding
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FIG. 6. T—p representation of the global phase diagram of the 2CLJ system
obtained in this work from Gibbs—Duhem simulations in the case of an
ordered CP1 solid phase. The symbols have the same meaning as those in

Fig. 3.

FIG. 4. P—T representation of the global phase diagri@apor, liquid, and
solid phasesfor the 2CLJ model system with* =1 from simulation re-
sults(symbolg and Wertheim’s TPT1solid curves$. See Fig. 3 for details of
the symbols. The inset shows tRe-T diagram at high pressure.

. " . . systems are shown. Note that in the Fig. 5, the density is
cgexstence dequues at the triple point al}'i9=Q.462, qnd expressed as the number of monomers per unit volume.
ps =0.515. In Figs. 3 and 4, the results obtained using the ™ is 5155 yseful to compare these results with those of
equations based on Wertheim's TPT1 are also included. It ig,q ¢a5e in which the ordered structure of 2CLJ molecules is
clearly seen that the theory provides an accurate descriptiof}sidered to be the stable phase. In Fig. 6, the phase dia-
of the coexistence properties of the 2CLJ model, includin ram in such a case is presented. Result:c, for the fluid-
th*e fluid—solid equilibria. The theory predicts a triple point at o jereq solid transition found from Gibbs—Duhem simula-
Ty =0.653, in excellent agreement with the simulation re-,nq are presented in Table V. The triple point in this case
sult. The triple-point temperature in a LJ monomer SYSMyould be located &= 0.5345). Thelower stability of the
predicted by the theorfi.e., m=1 herg is found to beT{" ;5 4ereq phase provokes a decrease in the triple-point tem-
=0.687, which is also in excellent agreement W'gl,;(the*com'perature, shifting the fluid—solid equilibrium to higher den-
puter simulation estimate of Agrawal and Kofke(T{ jties. The triple-point temperature of the 2CLJ model sys-
=0.687). As can be seen, the triple-point temperature of the, 1, \ith L*=0.67 has been determined by Lisal and
LJ dimer is 5% lower than that of the LJ monomer. The

comparison can be seen more clearly in Fig. 5, where the

phase diagram of the monomer LJ and of the 2CLJ modefapLE V. Fluid—solid coexistence conditions obtained using the Gibbs—
Duhem integration method for a 2CLJ model system with=1. The solid
structure corresponds to that of the ordered CP1 solid. The initial equilib-
rium point for the Gibbs—Duhem integration was a stat&’at 1 andP*
=11.10. The density at coexistence of the fluid is denotegfaswhereas

that of the solid is denoted ag .
T P* ¥ s
1.0000 11.1000 0.5399 0.5741
0.9524 9.8125 0.5346 0.5693
0.9091 8.6666 0.5318 0.5653
0.8696 7.6431 0.5259 0.5612
0.8511 7.1734 0.5233 0.5595
0.8163 6.3058 0.5191 0.5560
0.7843 5.5254 0.5149 0.5524
0.7692 5.1614 0.5141 0.5510
0.7407 4.4873 0.5107 0.5476
0.7143 3.8734 0.5064 0.5448
0.6897 3.3110 0.5031 0.5419
0.4 . . . \ 0.6780 3.0481 0.5014 0.5409
0 0.3 0.6 0.9 12 0.6431 2.2769 0.4966 0.5365
P 0.6116 1.5988 0.4921 0.5331
0.5831 0.9989 0.4882 0.5293
FIG. 5. T—p representation of the global phase diagramapor, liquid, and  0.5571 0.4648 0.4825 0.5260
solid phasesof the LJ systen(solid curve$, and that of the 2CLJ model (.5494 0.3077 0.4830 0.5253
0.0209 0.4794 0.5232

system withL* =1 (dashed curvgsThe reduced number density of mono- 0.5347
mers is denoted gey,=mp*.
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0.8 are small, but clearly visible. Simulations results for ordered
o7 | and disordered solids were presented in tabular form in Ref.
) 51 and shall not be reproduced here. In order to evaluate the
0.6 free energy of the ordered and disordered solid phases at low
temperatures, we have performed NVT simulations of the
0.5 }\\\\ solid phase at constant density= 0.549(using the equilib-
*. \\\ rium shape of the unit cell starting at temperaturé* =1
504 \ ;S and ending aff* =0.20. Thermodynamic integration yields
03 \\ the following expression for the free energies of the solid
\/‘9*’/4 phase along the isochore:
0.2 | A
* — *\ — * — * —
o1 | ] WBT(p =0.549T*) = WBT(p =0.549T*=1)
0 s s ‘ : ™ U T+
0 02 04 L 0.6 0.8 1 j | Ne (T*)2d . (15

FIG. 7. Sketch of thel, /T, ratio for 2CLJ model systemgSee Refs. 61 To perform the integral of Eq(15), we have fitted the
and 36, respectively, for the results fof =0 and those corresponding to residual internal energy to the following expression;
L*=0.67.) The results foL* =1 were obtained in this work, both for the
ordered(open circlg and disordered solid structuréfled circle). The solid

line connects the simulation resulisf Ref. 36 with those of the ordered
solid of this work. The dashed line is a sketch, and is not based on calcula-
tions.

U 2 3
— =Cot Cy T* +Cy(T*)%+c3(T*)3+ ¢y (T*)4

Ne (16)

The values of coefficients,—c, from Eq. (16), corre-
sponding to the ordered solid, are 16.538, 2.3769,
—0.074064,—0.141 85, and 0.090 332, whereas those for
Vacek® at T =0.62(in this case, the stable structure of the the disordered solid are-16.223, 2.5488,—0.38 096,
solid is the ordered oneWhen compared to the critical 0.27178, and—0.116 38. The values of the free energy at
point, the ratioT,/T. in the system withL* =0.67 takes a the reference state defined p§ =0.549 andT* =1 for the
valueT,;/T,=0.27, while for the model with.* =1 this ra- ordered and disordered solids were taken from Table Ill. It
tio takes a valueT,/T.=0.36 when the(stablg disordered was found that the Helmholtz free energies of the ordered
structure is considered, ang /T.=0.30 when the ordered and disordered solids were identical fof =0.549 andT*

CP1 structure is assumed. These calculations show that fer0.28. NPT simulations were performed for both the or-
the ordered solid, the rati®; /T is roughly constant with a dered and disordered solids Bt =0.28, and the EOS and
value of about 0.27, and slowly increases with. This con-  chemical potentials were evaluated for both types of solids.
clusion holds for systems with bond length>0.4 (no It was found that at low pressures, the ordered solid was
plastic crystal phases are possjiffeA marked difference is more stablglower chemical potential for a certain pressure
noted in comparison with th&; /T ratio of the LI monomer than the disordered solid. At high pressures, the disordered
fluid (T,/T.=0.687/1.3%0.52). In summary, the triple- solid turns out to be the stable phase. We locate the first-
point temperature is about 0.3 of the critical point in the caserder phase transition between the ordered and the disor-
of 2CLJ fluids withL*>0.4, but it is 1/2 of the critical dered solid phase &@*=0.54 for T*=0.28. Taking this
temperature in monomer LJ fluids. More work is needed tcstate as the initial equilibrium point, Gibbs—Duhem integra-
assess the variation @ /T with L*, especially in the range tion was performed in order to evaluate the coexistence line
of small values ofL* where plastic crystal phases are pos-between the ordered and the disordered solid. Results are
sible. However, the results of this work allow one to obtain apresented in Table VI and Figs. 8 and 9. As can be seen, the
tentative value for the rati®,; /T, of 2CLJ models of varying ordered solid is indeed the stable phase at low temperatures
L*. This is presented in Fig. 7. The results of this work areand pressures. The vapor-ordered solid-disordered solid
in line with the predictions of the mean-field theory proposedtriple point is located af* =0.282, the densities of the or-

by Paraset al®® dered and disordered solids being =0.5433 andp?

Let us finish by discussing the phase behavior of the=0.5462, respectively. It is noticeable in Fig. 8 that the den-
2CLJ at very low temperatures. For the range of temperasity jump between the two solid phases is small, and in Fig.9
tures considered so fgabove the triple point the disor- that the slope of the ordered solid—disordered solid phase
dered solid phase was found to be the stable phase. Howevéransition is negative. Using the Clapeyron relation, it can be
it is not clear which is the stable solid phase at very lowshown that the negative slope follows from a negative value
temperatures, since the ordered and disordered solids haeé Av (the disordered solid has a higher density than the
different thermodynamic properties. The differences may berdered ongand a positive value akh (the disordered solid
summarized as follows. For a certain temperature and derftas a higher enthalpy than the ordered olilit possible to
sity, the ordered solid has a slightly higher pressure, and provide a simple explanation for the fact that the ordered
slightly lower internal energy, than the disordered solid.solid is the stable phase at low temperatures? Notice that we
Zero-pressure densities of the ordered solid are slightare using classical statistical thermodynamics Halthough
smaller than those of the disordered solid. The differencefor a real substance at such low temperatures, a quantum
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TABLE VI. Ordered solid—disordered solid coexistence conditions obtained 24 T . -

using the Gibbs—Duhem integration method for a 2CLJ model system with \

L* =1. The initial equilibrium point for the Gibbs—Duhem integration was a {

state afT* =0.28 andP* =0.54. The density at coexistence of the ordered ~ 20 [} T
solid is denoted ag} , whereas that of the disordered solid is denoted as \\\ . T

*
Pd - 16 \\\ 2
T p* Pg p; \\ A ¢
\ A

0.2800 0.5400 0.5476 0.5507 L2y \\ G0

0.2652 2.8245 0.5627 0.5657 \ A2

0.2518 4.7287 0.5729 0.5761 g | \ DS s

0.2397 6.4268 0.5812 0.5846 \ S

0.2288 7.8639 0.5876 0.5914 oS \\ AAﬁA F

0.2141 9.6654 0.5953 0.5995 4t \\ &ﬁgﬁA

0.2011 11.1460 0.6013 0.6057 \\

0.1897 12.4245 0.6063 0.6109 | M
0.1795 13.5732 0.6107 0.6152 0 \ : S o5 S-cu-
0.1522 16.8007 0.6221 0.6266 0 0.5 1 L5 2
0.1321 19.3293 0.6302 0.6346 =
0.1167 21.3610 0.6365 0.6408 FIG. 9. Global phase diagraitin the P—T representationof the 2CLJ
0.1045 23.0255 0.6414 0.6457

model as obtained from the simulation results of this work. The solid line
corresponds to the disordered solid—ordered solid coexistence obtained from
Gibbs—Duhem integration, and the symbols are the same as those in Fig. 4.
The regions of stability of the fluidF), the OS and the DS are also shown.

treatment would be requirgnghe key issue is that for a Two triple points appear in the phase diagram: The vapor—liquid-disordered

certain density, the internal energy of the ordered solid

i§o|id and vapor-ordered solid-disordered solid points. The pressure curves

. . .. ssociated with both sublimation lindsapor-ordered solid and vapor-
lower than that of the disordered solid. This is due to the facﬂ1 4sap P

isordered soligare not visible on the scale.

that the ordered solid is noncubic and can distoetax) the
lattice parameters in an attempt to decrease the internal en-

ergy. The disordered solid cannot optimize the parameters dfherefore, the integrand becomes large at low temperatures
the unit cell since the distribution of bonds in the solid is and differences between ordered and disordered solids can be
isotropic. Notice that we are using anisotropic NPT Montesignificant at low temperatures. In fact, this is exactly what
Carlo (Rahman—Parrinello typefor the ordered solid and happens. The lower internal energy of the ordered solid is
isotropic NPT for the disordered solid. In the integrand ofable to compensate for the absence of the degeneracy en-
Eq. (15), the internal energy appears as divided byT¢l/  tropy. This leads to the appearance of an small region of

stability for the ordered solid in the phase diagram.

V. CONCLUSIONS

The global phase diagram of 2CLJ model molecules
| with L* =1 has been determined by computer simulation.
The vapor-liquid equilibria was obtained using Gibbs en-
semble simulations and NPT simulations at zero pressure
were used to determine the orthobaric densities at low tem-
] peratures. In terms of the fluid—solid equilibria, free-energy
calculations at a given temperature and density were first
carried out, and the equilibrium at the specified point was
obtained. The Gibbs—Duhem integration method was then
used to determine the complete fluid—solid coexistence
curve. It is found that the equilibrium solid structure for the
o . . . . . . 2CLJ withL* =1 corresponds to a disordered solid in which
0 0.1 02 03 04 - the atoms form an fcc lattice but the molecular bonds are
p* oriented randomly within the lattice. The corresponding
FIG. 8. Global phase diagrarfin the T—p representationof the 2cLJ  triple-point properties are found to b&f =0.650, pf
model as obtained from the simulation results of this work. The solid lines=0.462, andp? =0.515. As was found for two-dimensional
e e v S o o oSk dimers and for fuly flexible hard-sphere chains, the
;:frggC;EbS—Duhen?integration, the “left-hand side” trianglespto the vapor-dStabIe solid structure is a dlgordered one. Thls_seems to be a
ordered solid coexistence data obtained from NPT simulations at zero pre@€neral feature of fully flexible models of chain molecules

sure, and the remaining symbols are the same as those in Fig. 3. The regiofermed by tangent monomers. Wojciechowekia|.52’53 Sug-
of stability of the ordered solid€DS) and disordered soliddS) solids are

: _ ) , gested this possibility. Note, however, that the equilibrium
also shown. Two triple points appear in the phase diagram: The vapor—solid structures in models with arbitrary valuesidf are not
liquid-disordered solid point, located & =0.650(filled squares and the . R y

vapor-ordered solid-disordered solid point, located &t 0.282 (filled tri- expected to be disordered; it is likely that molecular systems

angles. with a bond lengtiL* different from 1 will exhibit ordered

O
C,
o
!
o

000,
(o]

0.5
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