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Bonded hard-sphere theory and computer simulation of the equation
of state of linear fused–hard-sphere fluids
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The bonded hard-sphere~BHS! theory is extended to fluids consisting of rigid, linear, homonuclear
molecules, each of them formed byn fused hard spheres. The theory shows excellent agreement
with the Monte Carlo NpT simulation data which are also reported for reduced bond lengths
l * 50.5 andn52, 3, 4, 6, 8, and 10. The accuracy of the BHS prediction in comparison to
simulation is similar to that of generalized Flory-dimer theory and superior to that of
thermodynamic perturbation theory. ©2003 American Institute of Physics.
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I. INTRODUCTION

Much attention has been devoted in the last two deca
to the study of fluids consisting of flexible molecules form
by tangent hard spheres. Now, a number of successful t
ries are available as well as a considerable amount of si
lation data. Two of the most popular theories are the W
theim’s thermodynamic perturbation theory~TPT!1 and the
generalized Flory-dimer~GFD! theory.2 The former of these
two theories, although first developed for flexible molecu
made up of tangent hard spheres, has been fur
extended3,4 to molecules consisting of fused hard spher
Many refinements have been introduced since then.

Polyatomic fluids containing rigid molecules have r
ceived less theoretical attention. Nevertheless, both TPT
GFD theories can be modified in order to extend their ap
cability to rigid linear molecules consisting of either tange
hard spheres~LTHS! or fused hard spheres~LFHS!.

A successful theory for molecular fluids consisting
chains of tangent hard spheres is the bonded hard-sp
~BHS! theory. This theory was first developed for hard-bo
fluids consisting of tangent hard spheres5,6 and later extended
to fused hard-sphere~FHS! fluids.7 However, apart from tet-
rahedral pentatomic FHS molecules, only short linear F
molecules, containing up to three spheres, were conside
The aim of this paper is to test the BHS theory for flui
consisting of linear FHS molecules with up to 10 monome
To this end, Monte Carlo NpT simulations have been p
formed for LFHS fluids consisting ofn spheres of equa
diameters, with n52, 3, 4, 6, 8, and 10, and center-to-cen
reduced distancel * 5 l /s50.5. These data are used to te
the performance of the BHS theory in comparison with G
and the modified TPT~MTPT! theories for these kinds o
fluids. In addition, second to fifth virial coefficients hav
been calculated numerically for the same fluids and co
pared with the corresponding values predicted by these t

a!Author to whom correspondence should be addressed. Electronic
solanajr@unican.es
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ries. The MC simulation method and the calculation of t
virial coefficients are presented in the next section. In Sec
the foundations of the BHS theory and its implementation
LFHS fluids are described. In the last section, results fr
BHS theory are compared with those obtained from MT
and GFD theories and from simulations.

II. MONTE CARLO SIMULATIONS

NpT Monte Carlo simulations have been performed
systems consisting of 256 particles, each of them formed
n hard spheres, with reduced bond lengthl * 50.5. The pres-
sure of the system, which is initially arranged in a regu
configuration, was increased step by step. After each incre
in pressure, the system was allowed to equilibrate for
3105 cycles, each of them consisting of an attempt of tra
lation plus an attempt of rotation per particle, and an
tempted volume change, after which the density was de
mined by averaging over 1.23105 additional cycles. No
signal of ordering of the particles was observed in syste
with n<6, but molecules in systems withn58 or n510
showed tendency to align their axes along a given direc
at high densities forming a nematic phase. For these
cases, the nematic order parameter was obtained from
largest eigenvalue of the second rank orientational tenso
the system~see Ref. 8 for further details!, according to

S25^ 3
2 cos2 u2 1

2&. ~1!

Results for the equation of state are listed in Tables I–
The tablesn58 andn510 include the values of the nemat
order parameterS2 .

On the other hand, second to fifth virial coefficients f
the same fluids have been numerically determined in
usual way,9,10 using 107 to 33108 trial configurations. A
hundred intermediate calculations, each of them with
same number of trial configurations, were used to estim
the uncertainty as the standard deviation of the mean. Re
are listed in Table VII.
il:
3 © 2003 American Institute of Physics
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III. BHS THEORY FOR LINEAR
FUSED–HARD-SPHERE FLUIDS

A. Linear tangent–hard-sphere fluids

Let us first summarize the BHS theory for LTHS fluid
In this theory, the compressibility factor of a fluid consistin

TABLE I. Monte Carlo simulation data for the equation of state of a LFH
fluid with n52. r* 5rs3 is the reduced density,h5rvm is the packing
fraction, wherevm is the molecular volume,p* 5ps3/kT is the reduced
pressure, andZ5p* /r* is the compressibility factor. The number in pare
theses in the density represents the statistical uncertainty in the last de
place.

p* r* h Z

0.10 0.074~3! 0.065 1.351
0.25 0.142~5! 0.125 1.761
0.35 0.173~6! 0.153 2.023
0.50 0.209~6! 0.185 2.392
0.75 0.256~6! 0.226 2.930
1.00 0.290~7! 0.256 3.448
1.25 0.319~6! 0.282 3.918
1.50 0.341~6! 0.301 4.399
1.75 0.359~6! 0.317 4.875
2.00 0.378~6! 0.334 5.291
2.25 0.392~5! 0.346 5.740
2.50 0.410~6! 0.362 6.098
2.75 0.419~6! 0.370 6.563
3.00 0.430~6! 0.380 6.977
3.25 0.441~5! 0.390 7.370
3.50 0.451~5! 0.399 7.761
4.00 0.468~5! 0.414 8.547
4.50 0.483~6! 0.427 9.317
5.00 0.498~4! 0.440 10.04
5.50 0.510~4! 0.451 10.78
6.00 0.523~5! 0.462 11.47
7.00 0.541~5! 0.478 12.94

TABLE II. As in Table I for n53.

p* r* h Z

0.10 0.067~3! 0.083 1.493
0.25 0.119~4! 0.148 2.101
0.35 0.143~4! 0.178 2.448
0.50 0.170~5! 0.211 2.941
0.75 0.203~4! 0.252 3.695
1.00 0.229~4! 0.285 4.367
1.25 0.247~4! 0.307 5.061
1.50 0.262~4! 0.326 5.725
1.75 0.276~4! 0.343 6.341
2.00 0.290~3! 0.361 6.897
2.25 0.301~4! 0.374 7.475
2.50 0.311~3! 0.387 8.039
2.75 0.319~4! 0.397 8.621
3.00 0.327~4! 0.407 9.174
3.25 0.335~3! 0.417 9.701
3.50 0.343~3! 0.427 10.20
4.00 0.353~3! 0.439 11.33
4.50 0.366~3! 0.455 12.30
5.00 0.373~3! 0.464 13.40
5.50 0.383~3! 0.476 14.36
6.00 0.390~3! 0.485 15.38
6.50 0.397~2! 0.494 16.37
Downloaded 10 Nov 2003 to 147.96.5.37. Redistribution subject to AIP
of N linear molecules, each of them formed byn tangent
hard spheres with diameterss i , is considered to consist o
two contributions in the form5,6

ZBHS5Zmix
HS 1Zbond, ~2!

where Zmix
HS is the compressibility factor of a mixture

of the nN unbonded spheres andZbond is the contri-
bution of the bonds. The first contribution is accurately giv
by the Boublı´k–Mansoori–Carnahan–Starling–Lelan
~BMCSL!11,12 equation of state

Zmix
HS 5

6

pr S j0

12j3
1

3j1j2

~12j3!2 1
3j2

3

~12j3!3 2
j3j2

3

~12j3!3D ,

~3!

wherer is the number density and

j l5
p

6
r(

i
xis i

l , ~4!

wherexi is the mole fraction of spheres of diameters i in the
mixture.

On the other hand, the bonding contribution can be
pressed in the form5,6

al

TABLE III. As in Table I for n54.

p* r* h Z

0.10 0.060~2! 0.096 1.670
0.25 0.103~3! 0.165 2.440
0.35 0.121~3! 0.194 2.886
0.50 0.143~3! 0.229 3.489
0.75 0.170~3! 0.273 4.411
1.00 0.186~3! 0.298 5.382
1.25 0.203~3! 0.326 6.167
1.50 0.217~3! 0.348 6.919
1.75 0.225~2! 0.361 7.768
2.00 0.235~2! 0.377 8.528
2.25 0.244~2! 0.391 9.215
2.50 0.253~3! 0.406 9.889
2.75 0.259~2! 0.415 10.64
3.00 0.264~2! 0.423 11.36
3.25 0.272~2! 0.436 11.95

TABLE IV. As in Table I for n56.

p* r* h Z

0.10 0.049~2! 0.114 2.041
0.25 0.080~2! 0.186 3.125
0.50 0.109~2! 0.253 4.587
0.75 0.127~2! 0.295 5.906
1.00 0.138~2! 0.321 7.246
1.25 0.147~2! 0.342 8.503
1.50 0.159~1! 0.369 9.434
1.75 0.165~1! 0.383 10.606
2.00 0.173~1! 0.402 11.561
2.25 0.177~1! 0.411 12.712
2.50 0.183~1! 0.425 13.661
2.75 0.188~1! 0.439 14.628
3.00 0.193~1! 0.448 15.544
3.25 0.197~2! 0.458 16.497
3.50 0.200~1! 0.464 17.544
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Zbond52 (
bonds

H 11
r

gi j
HS~s i j !

F]gi j
HS~s i j !

]r G
T,N

J , ~5!

where the sum extends over all bonds,s i j 5(s i1s j )/2 is the
contact distance for the pairi j in the HS mixture, and
gi j

HS(s i j ) is the contact value of the radial distribution fun
tion for the same pair. The expression ofgi j

HS(s i j ) which
corresponds to the BMCSL equation of state~3! is11

gi j
HS~s i j !5

1

12j3
1

3j2

~12j3!2

s is j

s i1s j

1
2j2

2

~12j3!3 S s is j

s i1s j
D 2

. ~6!

This completes the BHS equation of state for LTHS.

B. Linear fused–hard-sphere fluids

In the case of fused–hard-sphere fluids, the BHS theo7

replaces the real molecule by an equivalent one formed
tangent hard spheres. This equivalent molecule is determ
from the conditions that it must have both molecular volu

TABLE V. As in Table I for n58. S2 is the nematic order parameter.

p* r* h Z S2

0.10 0.042~1! 0.129 2.381 0.05
0.25 0.065~1! 0.198 3.846 0.06
0.50 0.087~1! 0.265 5.747 0.06
0.75 0.101~1! 0.307 7.426 0.07
1.00 0.110~1! 0.335 9.091 0.07
1.25 0.119~1! 0.362 10.504 0.08
1.50 0.125~1! 0.380 12.000 0.07
1.75 0.133~1! 0.405 13.158 0.10
2.00 0.138~1! 0.420 14.493 0.12
2.25 0.142~1! 0.432 15.845 0.15
2.50 0.148~1! 0.450 16.892 0.14
2.75 0.153~1! 0.466 17.974 0.34
3.00 0.159~1! 0.484 18.868 0.41
3.25 0.162~1! 0.493 20.062 0.40
3.50 0.167~1! 0.508 20.958 0.60

TABLE VI. As in Table I for n510. S2 is the nematic order parameter.

p* r* h Z S2

0.10 0.036~1! 0.135 2.778 0.06
0.25 0.055~1! 0.207 4.545 0.06
0.50 0.073~1! 0.275 6.849 0.07
0.75 0.084~1! 0.316 8.929 0.08
1.00 0.093~1! 0.350 10.753 0.10
1.25 0.101~1! 0.380 12.376 0.09
1.50 0.107~1! 0.403 14.019 0.28
1.75 0.114~1! 0.429 15.351 0.36
2.00 0.121~1! 0.455 16.529 0.47
2.25 0.130~1! 0.489 17.308 0.70
2.50 0.140~1! 0.527 17.857 0.80
2.75 0.145~1! 0.546 18.966 0.82
3.00 0.156~1! 0.587 19.231 0.84
3.25 0.159~1! 0.598 20.440 0.84
3.50 0.163~1! 0.613 21.472 0.84
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vm and nonsphericity parametera equal to those correspond
ing to the real molecule. The nonsphericity parameter fo
hard convex molecule is defined in the form

a5
RS

3vm
, ~7!

whereS is the surface of the molecule andR is ~1/4p! times
the mean curvature integrated over the whole surface of
convex body.13,14 However, for a nonconvex molecule th
latter quantity is not well defined. A successful criterion pr
posed by Boublı´k and Nezbeda~BN!15 in this case consists
of determining theR that corresponds to the convex env
lope of the molecule. Using this criterion, BHS theory w
applied7 to FHS fluids consisting of hard diatomic, triatomi
and tetrahedral pentatomic molecules.

For linear molecules withn.3, the nonsphericity pa-
rameter generally must be determined numerically.16 In the
BHS theory, it is suggested7 to apply the above-mentione
procedure to each of the diatomic segments which form
polyatomic molecule. An alternative way to define the no
sphericity parameter for homonuclear FHS molecules is17

a5
1

3p

~]vm /]s!~]2vm /]s2!

vm
, ~8!

where s is the diameter of the spheres. For homonucl
FHS molecules, this expression gives the same result as
BN procedure. The generalization of Eq.~8! to heteronuclear
LFHS molecules is straightforward17

a5
1

3p

( i~]vm /]s i !( i , j~]2vm /]s i]s j !

vm
. ~9!

This definition is particularly suitable for our purposes as
will see shortly.

Let us consider now a linear heteronuclear molec
consisting ofn fused hard spheres in which spherei has
diameters i and the center-to-center distance between t
adjacent spheresj andk is l jk . The volume of this molecule
can be obtained exactly in the form

vm5(
i 51

n

v i , ~10!

where

v i5
4
3 p~s i /2!32v i ,i 212v i ,i 11 , ~11!

with v i ,05vn,n1150,

v j ,k5 1
3 phjk

2 ~ 3
2 s j2hjk!, ~12!

TABLE VII. Reduced virial coefficientsBi* 5Bi /(vm) i 21 for LFHS fluids
with reduced bond lengthl * 50.5. Numbers in parentheses represent
estimated statistical uncertainty in the last digit.

n B2* B3* B4* B5*

2 4.327~1! 11.439~8! 21.62~6! 32.3~4!
3 4.778~1! 13.352~9! 25.09~9! 37.5~6!
4 5.266~2! 15.462~9! 28.6~1! 39.5~8!
6 6.287~2! 20.12~1! 34.3~1! 44~1!
8 7.330~2! 25.11~2! 37.5~1! 48~2!

10 8.384~3! 30.37~2! 37.2~2! 58~3!
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hjk5s j /22xjk , ~13!

and

xjk5
~s j /2!22~sk /2!21 l jk

2

2l jk
. ~14!

Using Eq.~10! for vm , together with Eqs.~11!–~14!, in
the definition Eq.~9!, the nonsphericity parametera for
LFHS molecules can be readily obtained. For diatomic a
triatomic molecules this gives the same results as the
procedure outlined above.

The procedure that we will use to apply the BHS theo
to rigid LFHS molecules will consist of replacing the re
molecule with an equivalent LTHS molecule with the diam
eterss i of the spheres determined from the conditions t
the molecular volumevm and the nonsphericity parametera,
as determined from Eqs.~10! and ~9!, respectively, must be
equal for the two molecules. Notice that the total number
spheres is kept identical in both models, the LFHS and
equivalent LTHS models. Forn52, the result will be the
same as that obtained from the original procedure.7 However,
for n.2 more than one solution is possible. This is illu
trated in Fig. 1 forn56. Note that, as we have only tw
conditions, only two different diameterss1 and s2 for the
spheres can be determined. But still we may have one
more spheres of diameters1 , where we consider thats1

.s2 for convenience, and the values ofs1 ands2 obtained
may depend on the relative positions of the spheres in
molecule, as Fig. 1 shows. Moreover, note that for fix
values ofs1 and s2 , and fixed number of spheres of ea
kind, the BHS equation of state depends on the relative
sitions of the two kinds of spheres through the depende
on bonds in Eq.~5!. However, for the molecules considere
here there are only two solutions which arise in all cas
They correspond to solutions~1! and~2! in Fig. 1. Of course,
for n52 the two solutions are equal. Both solutions diff
only slightly and, when implemented in the BHS theory, gi
nearly the same results. Therefore, we have considered
solution ~1! for all values ofn considered.

Alternatively, we could have considered the equivale
LTHS molecule to consist of an effective number of mon
mersneffÞn, all of them with the same diameterd. Again we
would have two parameters that could be determined fr
the two above-mentioned conditions. However, apart fr

FIG. 1. LTHS molecules equivalent to an homonuclear LFHS molecule w
l * 50.5 andn56.
Downloaded 10 Nov 2003 to 147.96.5.37. Redistribution subject to AIP
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the fact that this eventually would give noninteger values
neff , we have found that this yields poorer results for t
equation of state than those obtained from the procedure
propose.

IV. RESULTS AND DISCUSSION

The parameters relevant to the BHS theory obtained
described in the preceding section are listed in Table V
Results obtained from the BHS theory for the equation
state are compared in Figs. 2–7 with the simulation d
listed in Tables I–VI forl * 50.5. Forn58 andn510 only
the data corresponding to the isotropic phase have been
cluded in the figures. This corresponds roughly to pack
fractions below 0.45 forn58 and 0.40 forn510. For higher
packing fractions, the nematic order parameter starts to
crease abruptly, as shown in Tables V and VI. In addition
Figs. 8 and 9 the theoretical results are compared with
simulation data from Refs. 18 and 19 forl * 50.6 andn
511 and 15. We have not considered here the simula
data of Ref. 20 because they were reported only in graph
form. The predicted virial coefficients are compared with t
numerical values of Table VII and of Ref. 21 in Figs. 10–1
For comparison, we have included in these figures also

h

FIG. 2. Equation of state for a LFHS withl * 50.5 andn52. Points, simu-
lation data from this work. Continuous curve, BHS theory. Dashed cu
GFD theory. Dotted curve, MTPT1 theory. The curves are nearly indis
guishable with respect to each other at the scale of the figure.

TABLE VIII. Parameters in the BHS theory for the homonuclear LFH
fluids considered.l * is the center-to-center distance. Lengths are in units
s, the diameter of one of the spheres of the homonuclear LFHS molec
and volumes are in units ofs3. The equivalent LTHS molecule consists o
one sphere of diameters1 andn21 spheres of diameters2 .

n vm a s1 s2

l * 50.5
2 0.8836 1.1111 1.1830 0.3170
3 1.2435 1.2632 1.3224 0.3151
4 1.6035 1.4286 1.4345 0.3330
6 2.3235 1.7746 1.6127 0.3651
8 3.0434 2.1290 1.7545 0.3888
10 3.7634 2.4870 1.8740 0.4068

l * 50.6
11 4.6705 3.1390 1.9680 0.5063
15 6.3293 4.0437 2.1550 0.5297
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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results we have obtained from the generalized Flory-dim
~GFD! theory as well as from the first-order thermodynam
perturbation theory appropriately modified, as shown la
for these kind of fluids.

The GFD equation of state for homonuclear LTHS
expressed in the form2

ZGFD5~Yn11!Z22YnZ1 , ~15!

whereZ1 is the compressibility factor of the monomers, th
is, the hard-sphere fluid, and is given accurately by
Carnahan–Starling22 equation

Z15
11h1h22h3

~12h!3 , ~16!

Z2 is the compressibility factor of a hard dumbbell flui
given by23

Z25
11F~ l * !h1G~ l * !h22H~ l * !h3

~12h!3 ~17!

with l * 51 for tangent spheres,

F~ l * !5110.378 36l * 11.078 60l * 3, ~18!

G~ l * !5111.303 76l * 11.800 10l * 3, ~19!

H~ l * !5112.398 03l * 10.357 00l * 3, ~20!

and

FIG. 3. As in Fig. 2 forn53. BHS and GFD curves are nearly indistin
guishable to each other at the scale of the figure.

FIG. 4. As in Fig. 2 forn54. BHS and GFD curves are nearly indistin
guishable to each other at the scale of the figure.
Downloaded 10 Nov 2003 to 147.96.5.37. Redistribution subject to AIP
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FIG. 5. As in Fig. 2 forn56. BHS and GFD curves are nearly indistin
guishable to each other at the scale of the figure.

FIG. 6. As in Fig. 2 forn58. Simulation results are presented only for th
isotropic phase.

FIG. 7. As in Fig. 2 forn510. Simulation results are presented only for t
isotropic phase.

FIG. 8. As in Fig. 2 forl * 50.6 andn511. Simulation data are from Refs
18 and 19.
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Yn5
ve~n!2ve~2!

ve~2!2ve~1!
, ~21!

whereve(1), ve(2), andve(n) are the excluded volumes o
the monomer, dimer, andn-mer molecules, respectively. Fo
rigid linear molecules these excluded volumes are given b24

ve~1!5 4
3 ps3, ~22!

ve~2!5
4

3
ps3F11

3

2

l *

2
2

1

2 S l *

2 D 2G , ~23!

ve~n!5ve~1!1~n21!@ve~2!2ve~1!#, ~24!

which gives

Yn5n22. ~25!

On the other hand, the Wertheim’s TPT1 equation
state for LTHS molecules is expressed in the form1

ZTPT15n
11h1h22h3

~12h!3 2~n21!
11h2h2/2

~12h!~12h/2!
.

~26!

The theory has been modified in order to extend its
plicability to LFHS3,4 fluids. The modified Wertheim’s o
modified TPT1~MTPT1! equation of state is expressed
the form

FIG. 9. As in Fig. 2 forl * 50.6 andn515. Simulation data are from Refs
18 and 19.

FIG. 10. Second virial coefficient for LFHS fluids withl * 50.5. Points,
exact results from Table VII~circles! and from Ref. 21~squares!. Continu-
ous, dashed, and dotted curves are the results from BHS, GFD, and MT
theories, respectively.
Downloaded 10 Nov 2003 to 147.96.5.37. Redistribution subject to AIP
f

-

ZMTPT15~2a21!
11h1h22h3

~12h!3

2~2a22!
11h2h2/2

~12h!~12h/2!
. ~27!

In Figs. 2–9 one can see that both, the BHS and the G
theories, have nearly the same accuracy as compared
simulation data for the equation of state at low values ofn.
In fact the curves corresponding to these two theories
nearly indistinguishable to each other at the scale of the
ures but forn>8, when the BHS theory is perhaps a bit mo
accurate at moderate densities. By contrast, the MTP
theory considerably overestimates the simulation data
most cases.

Figure 10 shows that second virial coefficient is mu
better predicted by the BHS and MTPT1 theories than by
GFD theory. Figure 11 shows that the third virial coefficie
is more accurately given by the GFD and MTPT1 theor
than by the BHS theory. Fairly good accuracy up ton58 is
achieved from the GFD and BHS theories~Fig. 12! in pre-
dicting the fourth virial coefficient, whereas it is conside
ably overestimated by the MTPT1 theory. Finally, none
these theories are capable of accurately reproducing the
virial coefficient for high values ofn although again GFD
and BHS theories are more satisfactory, as Fig. 13 show

In summary, we have extended the BHS theory to flu
consisting of rigid linear fused hard spheres. For the co

T1

FIG. 11. As in Fig. 10 for the third virial coefficient.

FIG. 12. As in Fig. 10 for the fourth virial coefficient.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



as
e
th
ls
th
a
h.
ea
les
lo

t
r

J.

9639J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 Equation of state of linear fused–hard-sphere fluids
pressibility factor the theory shows, on the whole, at le
similar accuracy to the generalized Flory-dimer theory wh
compared with the reported simulation data. Regarding
virial coefficients, comparison with the numerical values a
reported reveals that the BHS theory is more accurate
the GFD theory for the second virial coefficient, less accur
for the third, and of similar accuracy for the fourth and fift
Therefore, the BHS theory seems to be appropriate for d
ing with fluids consisting of elongated polyatomic molecu
as well as fluids having shorter molecules. Research a
these lines is continuing in our laboratory.

FIG. 13. As in Fig. 10 for the fifth virial coefficient.
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