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Bonded hard-sphere theory and computer simulation of the equation
of state of linear fused—hard-sphere fluids
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The bonded hard-sphe(BHS) theory is extended to fluids consisting of rigid, linear, homonuclear
molecules, each of them formed lyfused hard spheres. The theory shows excellent agreement
with the Monte Carlo NpT simulation data which are also reported for reduced bond lengths
I*=0.5 andn=2, 3, 4, 6, 8, and 10. The accuracy of the BHS prediction in comparison to
simulation is similar to that of generalized Flory-dimer theory and superior to that of
thermodynamic perturbation theory. 8003 American Institute of Physics.
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I. INTRODUCTION ries. The MC simulation method and the calculation of the
. . virial coefficients are presented in the next section. In Sec. Il

Much attentlo.n has be_en devoted_m the last two decadet e foundations of the BHS theory and its implementation for
to the study of fluids consisting of flexible molecules formedLFHS fluids are described. In the last section. results from

by tangent hard spheres. Now, a number of successful the%'HS theory are compared with those obtained from MTPT
ries are available as well as a considerable amount of simu-

lation data. Two of the most popular theories are the Werfand GFD theories and from simulations.
theim’s thermodynamic perturbation theofyPT)* and the
generalized Flory-dime{GFD) theory? The former of these Il. MONTE CARLO SIMULATIONS
two theories, although first developed for flexible molecules
made up of tangent hard spheres, has been further NpT Monte Carlo simulations have been performed for
extended” to molecules consisting of fused hard spheressystems consisting of 256 particles, each of them formed by
Many refinements have been introduced since then. n hard spheres, with reduced bond lenfitk=0.5. The pres-
Polyatomic fluids containing rigid molecules have re-sure of the system, which is initially arranged in a regular
ceived less theoretical attention. Nevertheless, both TPT angbnfiguration, was increased step by step. After each increase
GFD theories can be modified in order to extend their appliin pressure, the system was allowed to equilibrate for 1.2
cability to rigid linear molecules consisting of either tangentx 10° cycles, each of them consisting of an attempt of trans-
hard sphere$L. THS) or fused hard spherd& FHS). lation plus an attempt of rotation per particle, and an at-
A successful theory for molecular fluids consisting of tempted volume change, after which the density was deter-
chains of tangent hard spheres is the bonded hard-sphemined by averaging over 1:210° additional cycles. No
(BHS) theory. This theory was first developed for hard-bodysignal of ordering of the particles was observed in systems
fluids consisting of tangent hard spherkand later extended Wwith n<6, but molecules in systems with=8 or n=10
to fused hard-spher@HS fluids.” However, apart from tet- showed tendency to align their axes along a given direction
rahedral pentatomic FHS molecules, only short linear FHSat high densities forming a nematic phase. For these two
molecules, containing up to three spheres, were consideregases, the nematic order parameter was obtained from the
The aim of this paper is to test the BHS theory for fluidslargest eigenvalue of the second rank orientational tensor of
consisting of linear FHS molecules with up to 10 monomersthe systen(see Ref. 8 for further detajlsaccording to
To this end, Monte Carlo NpT simulations have been per- 3 .
formed for LFHS fluids consisting oh spheres of equal S;=(3c08 6 3). @)
diametero, with n=2, 3, 4, 6, 8, and 10, and center-to-centerResults for the equation of state are listed in Tables 1-VI.
reduced distanc€” =1/0=0.5. These data are used to testThe tablesn=8 andn= 10 include the values of the nematic
the performance of the BHS theory in comparison with GFDorder paramete, .
and the modified TPTMTPT) theories for these kinds of On the other hand, second to fifth virial coefficients for
fluids. In addition, second to fifth virial coefficients have the same fluids have been numerically determined in the
been calculated numerically for the same fluids and comusual way’'° using 10 to 3x1C® trial configurations. A
pared with the corresponding values predicted by these the¢rundred intermediate calculations, each of them with the
same number of trial configurations, were used to estimate
3Author to whom correspondence should be addressed. Electronic maif1€ Uncertainty as the standard deviation of the mean. Results
solanajr@unican.es are listed in Table VII.
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TABLE |. Monte Carlo simulation data for the equation of state of a LFHS TABLE Ill. As in Table | for n=4.
fluid with n=2. p*=pa? is the reduced densityy=pv, is the packing
fraction, wherev,, is the molecular volumep* =po°/kT is the reduced p* p* Ui z
r re, and =p*/p* is th mpressibility factor. The number in paren-
pressu _e,a d=p ./p is the co pesspl |ty acto g ut ber in pare © 0.0 0.062) 0,096 1670
theses in the density represents the statistical uncertainty in the last deC|m8125

0.1083) 0.165 2.440
place. 0.35 0.1213) 0.194 2.886
p* o ” 7 0.50 0.1483) 0.229 3.489
0.75 0.1703) 0.273 4.411
0.10 0.0743) 0.065 1.351 1.00 0.1863) 0.298 5.382
0.25 0.1425) 0.125 1.761 1.25 0.2083) 0.326 6.167
0.35 0.1786) 0.153 2.023 1.50 0.2173) 0.348 6.919
0.50 0.2096) 0.185 2.392 1.75 0.22%2) 0.361 7.768
0.75 0.2566) 0.226 2.930 2.00 0.2352) 0.377 8.528
1.00 0.2907) 0.256 3.448 2.25 0.2442) 0.391 9.215
1.25 0.319) 0.282 3.918 2.50 0.2583) 0.406 9.889
1.50 0.3416) 0.301 4.399 2.75 0.25%2) 0.415 10.64
1.75 0.35%) 0.317 4.875 3.00 0.2642) 0.423 11.36
2.00 0.3786) 0.334 5.291 3.25 0.27R2) 0.436 11.95
2.25 0.3925) 0.346 5.740
2.50 0.4106) 0.362 6.098
2.75 0.41%) 0.370 6.563
3.00 0.4306) 0.380 6.977
3.25 0.4415) 0.390 7.370 of N linear molecules, each of them formed hytangent
3.50 0.4515) 0.399 7.761 hard spheres with diametees, is considered to consist of
4.00 0.4685) 0.414 8.547 two contributions in the form®
4.50 0.4886) 0.427 9.317
5.00 0.4984) 0.440 10.04 ZBHS=7HS 4 Zzbond 2)
5.50 0.5104) 0.451 10.78
6.00 0.5285) 0.462 11.47 where Z"> is the compressibility factor of a mixture
7.00 0.5415) 0.478 12.94 of the nN unbonded spheres and™" is the contri-
bution of the bonds. The first contribution is accurately given
by the Boublk—Mansoori—Carnahan-Starling—Leland
(BMCSL)**? equation of state
I1l. BHS THEORY FOR LINEAR 33 3
FUSED-HARD-SPHERE FLUIDS gis_ O f_ S&& & EL

o =— + + - ,
_ _ M ap\l-é (1-£)° (1-£&5)° (1-&)°
A. Linear tangent—hard-sphere fluids (3)

Let us first summarize the BHS theory for LTHS fluids. wherep is the number density and
In this theory, the compressibility factor of a fluid consisting

a

b=gp2 X, @

TABLE II. As in Table | for n=3. Wherexi is the mole fraction of spheres of diameterin the
mixture.
p* p* 7 z On the other hand, the bonding contribution can be ex-

0.10 0.0673) 0.083 1493  Pressed in the forfif
0.25 0.1194) 0.148 2.101
0.35 0.1484) 0.178 2.448
0.50 0.1705) 0.211 2.941 . B
075 0.2084) 0252 3695 TABLE IV. As in Table | for n=6.
1.00 0.2294) 0.285 4.367 o* o ” 7
1.25 0.2474) 0.307 5.061
1.50 0.2624) 0.326 5725  0.10 0.04%2) 0.114 2.041
1.75 0.2764) 0.343 6.341 025 0.08@2) 0.186 3.125
2.00 0.2908) 0.361 6.897  0.50 0.1092) 0.253 4,587
2.25 0.3014) 0.374 7.475  0.75 0.1272) 0.295 5.906
2.50 0.3113) 0.387 8.039  1.00 0.13%) 0.321 7.246
2.75 0.3194) 0.397 8.621  1.25 0.1472) 0.342 8.503
3.00 0.3274) 0.407 9.174 150 0.1591) 0.369 9.434
3.25 0.33%3) 0.417 9701  1.75 0.1651) 0.383 10.606
3.50 0.3483) 0.427 1020  2.00 0.1781) 0.402 11.561
4.00 0.3583) 0.439 1133 225 0.1770) 0.411 12.712
4.50 0.3663) 0.455 1230 250 0.1881) 0.425 13.661
5.00 0.3783) 0.464 1340 275 0.1881) 0.439 14.628
5.50 0.3883) 0.476 1436 3.00 0.1981) 0.448 15.544
6.00 0.39@3) 0.485 15.38  3.25 0.1972) 0.458 16.497
6.50 0.3972) 0.494 16.37  3.50 0.2001) 0.464 17.544
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TABLE V. As in Table | forn=8. S, is the nematic order parameter. TABLE VII. Reduced virial coefficient8} =B; I(v)'~t for LFHS fluids
with reduced bond length* =0.5. Numbers in parentheses represent the
p* p* 7 z S estimated statistical uncertainty in the last digit.
0.10 0.0421) 0.129 2.381 0.05 n B B B B
0.25 0.0651) 0.198 3.846 0.06
0.50 0.0871) 0.265 5.747 0.06 2 4.3271) 11.4398) 21.626) 32.34)
0.75 0.1011) 0.307 7.426 0.07 3 4.7781) 13.3529) 25.099) 37.56)
1.00 0.1101) 0.335 9.091 0.07 4 5.2662) 15.4629) 28.61) 39.58)
1.25 0.1191) 0.362 10.504 0.08 6 6.2872) 20.141) 34.31) 44(1)
1.50 0.1251) 0.380 12.000 0.07 8 7.3302) 25.112) 37.51) 48(2)
1.75 0.1381) 0.405 13.158 0.10 10 8.3843) 30.3712) 37.22) 58(3)
2.00 0.1381) 0.420 14.493 0.12
2.25 0.1421) 0.432 15.845 0.15
2.50 0.1481) 0.450 16.892 0.14
2.75 0.1581) 0.466 17.974 0.34 vy, and nonsphericity parameterequal to those correspond-
z-gg 8-12% g-jgg ;g-ggg 8-33 ing to the real molecule. The nonsphericity parameter for a
350 0.1671) 0.508 50958 0.60 hard convex molecule is defined in the form
RS .
@ v, ™
99"S(or1) whereS is the surface of the molecule aRtis (1/4m) times
Zbonde _ N 14 Hsp { 9ij 1% , (5)  the mean curvature integrated over the whole surface of the
bonds gij (o)l dp iy convex body*>** However, for a nonconvex molecule the

latter quantity is not well defined. A successful criterion pro-
posed by Boubk and Nezbed#BN)® in this case consists
of determining theR that corresponds to the convex enve-
lope of the molecule. Using this criterion, BHS theory was
applied to FHS fluids consisting of hard diatomic, triatomic,
and tetrahedral pentatomic molecules.

where the sum extends over all bondg,= (o;+ o;)/2 is the
contact distance for the paij in the HS mixture, and
gi/%(oyj) is the contact value of the radial distribution func-
tion for the same pair. The expression gﬂ‘s((ri{) which
corresponds to the BMCSL equation of st&Bg is™*

HS _ 3¢ 00| For linear molecules witm>3, the nonsphericity pa-
gij (i) = 1-&, + (1-£&5)° o+ 0 rameter generally must be determined numeric4liy the
5 ) BHS theory, it is suggestédo apply the above-mentioned
n 285 gi0j ) 6) procedure to each of the diatomic segments which form the
(1—&5)3 ot 0 polyatomic molecule. An alternative way to define the non-

sphericity parameter for homonuclear FHS moleculés is
1 (dvmldo) (9% mlda?)
a= S )

37 Um

This completes the BHS equation of state for LTHS.

®

B. Linear fused—hard-sphere fluids ) )

) i where o is the diameter of the spheres. For homonuclear
In the case of fused—hard-sphere fluids, the BHS tHeorygp s molecules, this expression gives the same result as the

replaces the real molecule by an equivalent one formed by hrocedure. The generalization of E8) to heteronuclear
tangent hard spheres. This equivalent molecule is determingd-Hs molecules is straightforwartl

from the conditions that it must have both molecular volume
1 Ei((9Um/(?0'i)2i’j((9zl}m/(90'i(90'j)

3 Um '

€)

o
TABLE VI. As in Table | forn=10. S, is the nematic order parameter. g definition is particularly suitable for our purposes as we
p* p* ” 7 S, will see shortly. . .
Let us consider now a linear heteronuclear molecule

0.10 0.0361) 0.135 2.778 0.06 consisting ofn fused hard spheres in which sphéaréas
0.25 0.0551) 0.207 4.545 0.06 ) .

0.50 0.0781) 0.275 6.849 0.07 diametero; and the center-to-center distance between two
0.75 0.0841) 0.316 8.929 0.08 adjacent sphergsandk is I, . The volume of this molecule
1.00 0.0981) 0.350 10.753 0.10 can be obtained exactly in the form

1.25 0.1011) 0.380 12.376 0.09 |

1.50 0.1071) 0.403 14.019 0.28

1.75 0.1141) 0.429 15.351 0.36 Um=>, v, (10)
2.00 0.1211) 0.455 16.529 0.47 =1

2.25 0.1301) 0.489 17.308 0.70 where

2.50 0.1401) 0.527 17.857 0.80

2.75 0.1451) 0.546 18.966 0.82 v, :gﬂ(gi/2)3_viyifl_vi’i+l, (11)
3.00 0.1561) 0.587 19.231 0.84 )

3.25 0.1501) 0.598 20.440 0.84 with v; o=vp n+1=0,

3.50 0.1631) 0.613 21.472 0.84

Uj,k:%Whjzk(%Uj_hjk), (12
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and volumes are in units af>. The equivalent LTHS molecule consists of
2) one sphere of diameter, andn—1 spheres of diameter,.
n Um a (21 o)
3)
I*=0.5

0.8836 11111 1.1830 0.3170
1.2435 1.2632 1.3224 0.3151

TABLE VIIl. Parameters in the BHS theory for the homonuclear LFHS
1) fluids considered.* is the center-to-center distance. Lengths are in units of
o, the diameter of one of the spheres of the homonuclear LFHS molecules,
=05

&S
-
oo~ wWN

1.6035 1.4286 1.4345 0.3330
2.3235 1.7746 1.6127 0.3651
Real LFHS molecule Equivalent LTHS molecules 3.0434 2.1290 1.7545 0.3888
10 3.7634 2.4870 1.8740 0.4068
FIG. 1. LTHS molecules equivalent to an homonuclear LFHS molecule with
|*=0.5 andn=6. 1*=0.6
11 4.6705 3.1390 1.9680 0.5063
15 6.3293 4.0437 2.1550 0.5297
hjkztfj /2_Xjk1 (13)
and

12)2 12124 |2 the fact that this eventually would give noninteger values of
,k:(UJ )"~ (on/2)"+ ik (14)  Meft, We have found that this yields poorer results for the
! 2l equation of state than those obtained from the procedure we

Using Eq.(10) for v,,, together with Eqs(11)—(14), in  Propose.
the definition Eq.(9), the nonsphericity parameter for
LFHS molecules can be readily obtained. For diatomic andV. RESULTS AND DISCUSSION

triatomic molecules this gives the same results as the BN 4 parameters relevant to the BHS theory obtained as
procedure outlined above. described in the preceding section are listed in Table VIII.

The procedure that we will use to apply the BHS theorypagits obtained from the BHS theory for the equation of
to rigid LFHS molecules will consist of replacing the real gii0 are compared in Figs. 2—7 with the simulation data
molecule with an equivalent LTHS molecule with the diam- |isied in Tables 1-VI forl* =0.5. Forn=8 andn= 10 only

eterso; of the spheres determined from the conditions that,o gata corresponding to the isotropic phase have been in-

the molecular volume ,, and the nonsphericity parame®r  ¢),qeq in the figures. This corresponds roughly to packing
as determined from Eq¢10) and (9), respectively, must be 4 ctions below 0.45 fon=8 and 0.40 fon=10. For higher
equal for the two molecules. Notice that the total number ofy,cking fractions, the nematic order parameter starts to in-
spheres is kept identical in both models, the LFHS and the gase abruptly, as shown in Tables V and VI. In addition, in
equivalent LTHS models. Fon=2, the result will be the

! o Figs. 8 and 9 the theoretical results are compared with the
same as that obtained from the original procedutewever, simulation data from Refs. 18 and 19 f6f=0.6 andn
for n>2 more than one solution is possible. This is illus-

< =11 and 15. We have not considered here the simulation
trated in Fig. 1 forn=6. Note that, as we have only tWo qa¢s of Ref. 20 because they were reported only in graphical
conditions, only two different diameters, and o for the ¢4 The predicted virial coefficients are compared with the
spheres can be determined. But still we may have one qf,merical values of Table VIl and of Ref. 21 in Figs. 10-13.

more spheres of diameter,, where we consider that;  £qr comparison, we have included in these figures also the
> g, for convenience, and the values®f and o, obtained

may depend on the relative positions of the spheres in the

molecule, as Fig. 1 shows. Moreover, note that for fixed 15

values ofo; and o,, and fixed number of spheres of each

kind, the BHS equation of state depends on the relative po-

sitions of the two kinds of spheres through the dependency 10

on bonds in Eq(5). However, for the molecules considered

here there are only two solutions which arise in all cases.

They correspond to solutiori$) and(2) in Fig. 1. Of course, 5

for n=2 the two solutions are equal. Both solutions differ

only slightly and, when implemented in the BHS theory, give

nearly the same results. Therefore, we have considered the 0 , , , ,

solution (1) for all values ofn considered. 0.0 0.1 0.2 0.3 0.4 0.5
Alternatively, we could have considered the equivalent n

LTHS molecule to consist of an effective number of mono- _ ) _ _

mersnyn,al ofthem vith the same diameta Againwe _ [18 2 Svelon o e 008 L D05 2 Ponis S

would have two parameters that could be determined frongep theory. Dotted curve, MTPT1 theory. The curves are nearly indistin-

the two above-mentioned conditions. However, apart fronmguishable with respect to each other at the scale of the figure.
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20 T T T T 20 T T T T
15 15 -
Z 19 Z 19 s
5 5 |
0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
n n
FIG. 3. As in Fig. 2 forn=3. BHS and GFD curves are nearly indistin- FIG. 5. As in Fig. 2 forn=6. BHS and GFD curves are nearly indistin-
guishable to each other at the scale of the figure. guishable to each other at the scale of the figure.
20
results we have obtained from the generalized Flory-dimer 16
(GFD) theory as well as from the first-order thermodynamic
perturbation theory appropriately modified, as shown later, 12
for these kind of fluids. Z
The GFD equation of state for homonuclear LTHS is 8
expressed in the form
Z6FP= (Y, +1)Z,— Y, Z4, (15 4
whereZ, is the compressibility factor of the monomers, that 0
is, the hard-sphere fluid, and is given accurately by the
Carnahan—Starlirf§ equation n
1+ 9+ 772— 773 FIG. 6. As in Fig. 2 forn=8. Simulation results are presented only for the
l:W’ (16) isotropic phase.
. i . 20
Z, is the compressibility factor of a hard dumbbell fluid, ' ' ' /
given by 16 i
1+F(I*)p+G(*) p?>—H(1*) 5* a7
2= — 33 12 ]
(1=7n) Z
with |* =1 for tangent spheres, 8 .
F(1*)=1+0.378 36* + 1.078 60* 3, (18 4 |
G(1*)=1+1.303 76* +1.800 10* 3, (19
0
H(1*)=1+2.398 03* +0.357 00* 3, (20) 0.5
and
FIG. 7. As in Fig. 2 fom=10. Simulation results are presented only for the
isotropic phase.
15 15 T T |
10 = 10 _
z z
5 . 5 n
0 | | 1 | 0 | | 1
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4
n n

FIG. 4. As in Fig. 2 forn=4. BHS and GFD curves are nearly indistin- FIG. 8. As in Fig. 2 forl* =0.6 andn=11. Simulation data are from Refs.
guishable to each other at the scale of the figure. 18 and 19.
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15 T T
10 .
Z
5 —
0 1 1
0.0 0.1 0.2 0.3

FIG. 9. Asin Fig. 2 forl* =0.6 andn=15. Simulation data are from Refs.
18 and 19.

:Ue(n)_ve(z)
" ve(2)—ve(l)’
wherev (1), ve(2), andv(n) are the excluded volumes of

the monomer, dimer, angkmer molecules, respectively. For
rigid linear molecules these excluded volumes are givéfi by

(21)

ve(1)= 5w, (22)
4 [31r 1(1x)|?
Ue(2)—§770' 1+§E—§ E , (23
ve(N)=ve(1)+(N=1)[ve(2) —ve(1)], (24
which gives
Y,=n-2. (25)

Largo et al.

35 T T T T T

30

25

20

15

10

FIG. 11. As in Fig. 10 for the third virial coefficient.

1+ 9+ 92— 7°
1=

1+ 5— 5?12
(1= (172

In Figs. 2—9 one can see that both, the BHS and the GFD
theories, have nearly the same accuracy as compared with
simulation data for the equation of state at low values .of
In fact the curves corresponding to these two theories are
nearly indistinguishable to each other at the scale of the fig-
ures but fom=8, when the BHS theory is perhaps a bit more
accurate at moderate densities. By contrast, the MTPT1
theory considerably overestimates the simulation data in
most cases.

Figure 10 shows that second virial coefficient is much

ZMTPTl: (2a_ 1)

—(2a-2) (27)

On the other hand, the Wertheim's TPT1 equation ofbetter predicted by the BHS and MTPTL1 theories than by the

state for LTHS molecules is expressed in the fbrm
1+ p— %12

(1- ) (1-7i2)°
(26)

1+ 9+ 772— 173

ZTPTl:
(1-17)°

(n—1)

GFD theory. Figure 11 shows that the third virial coefficient
is more accurately given by the GFD and MTPT1 theories
than by the BHS theory. Fairly good accuracy umte8 is
achieved from the GFD and BHS theorigsg. 12) in pre-
dicting the fourth virial coefficient, whereas it is consider-

The theory has been modified in order to extend its apably overestimated by the MTPT1 theory. Finally, none of
plicability to LFHS* fluids. The modified Wertheim’s or these theories are capable of accurately reproducing the fifth
modified TPT1(MTPT1) equation of state is expressed in virial coefficient for high values oh although again GFD

the form and BHS theories are more satisfactory, as Fig. 13 shows.
In summary, we have extended the BHS theory to fluids
consisting of rigid linear fused hard spheres. For the com-
9 T T T T T
8 - -
70 T T T T T
< 7T i 60 | .
BZ
6 - —
. 50 1
B
5 | ] 4
40 | .
4 - —
o 2 4 6 8 10 12 30
n
20
FIG. 10. Second virial coefficient for LFHS fluids witlf =0.5. Points, 0 2 4 6 8 10 12

exact results from Table Vl(circles and from Ref. 21(squares Continu- n
ous, dashed, and dotted curves are the results from BHS, GFD, and MTPT1

theories, respectively. FIG. 12. As in Fig. 10 for the fourth virial coefficient.

Downloaded 10 Nov 2003 to 147.96.5.37. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 Equation of state of linear fused—hard-sphere fluids 9639

100 T T T —e ACKNOWLEDGMENTS
90 | . The authors are grateful to the Spanish Direaci®@en-
8o | | eral de Investigacio for the financial support under Grant
No. BFM2000-0014. L.G.M. thanks MCYT and UCM for
g or 1 the award of a Ramoy Cajal fellowship.
5
eor i IM. S. Wertheim, J. Chem. Phy87, 7323(1987).
50 | — 2K. G. Honnell and C. K. Hall, J. Chem. Phyg0, 1841(1989.
3T. Boublk, Mol. Phys.66, 191(1989.
40 7 4J. M. Walsh and K. E. Gubbins, J. Phys. Che&, 5515(1990.
30 SA. L. Archer and G. Jackson, Mol. Phyg3, 881 (1997).

5M. D. Amos and G. Jackson, Mol. Phya4, 191 (1991).
M. D. Amos and G. Jackson, J. Chem. Phg8,. 4604 (1992.
8D. Frenkel and B. M. Mulder, Mol. Phy&5, 1171(1985.

- L . °F H.R dW. G. H , J. Chem. Ph¥8, 939 (1964.
FIG. 13. As in Fig. 10 for the fifth virial coefficient. 10 Rigtfye JanChem Ph)cl);vserlozl(lgr;q g8 (1964

1T, Boublk, J. Chem. Phys53, 471(1970.
2G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J.
Chem. Phys54, 1523(1972.
137, Kihara, Adv. Chem. Phys, 147 (1963.
Ly 14

pressibility factor the theory shows, on the whole, at least Ti Boubfk and I. Nezbeda, Collect. Czech. Chem. Commii. 2301
similar accuracy to the genera!lzed F_Iory—d|mer theory_ whenst 5o bk and 1. Nezbeda, Chem. Phys. Let, 315 (1977,
compared with the reported simulation data. Regarding théss. Alejandre, S. E. Mamez-Casas, and G. A. Chapela, Mol. Phgs,
virial coefficients, comparison with the numerical values alsol71185(1988-
r r reveals th he BHS theorv is mor r hapS: Lago, J. L. F. Abascal, and A. Ramos, Phys. Chem.12q183(1983.
€po ted reveals that the S t _eo y S. .O e accurate t aQC. McBride, C. Vega, and L. G. MacDowell, Phys. Rev.6& 011703
the GFD theory for the second virial coefficient, less accurate ;g0
for the third, and of similar accuracy for the fourth and fifth. °c. McBride and C. Vega, J. Chem. Phyid7, 10370(2002.
Therefore, the BHS theory seems to be appropriate for deaf:M. Whitle and A. J. '\élasterS,, Mol. IIDhyEZ 247 (1993()- .
; : ; ot ; C. Vega, S. Lago, and B. GanzoMol. Phys.82, 1233(1994).
ing with fIU|ds_conS|st!ng of elongated polyatomic moIecuIeszzN. F. Carnahan and K. E. Starling, J. Chem. PIfs 635 (1969,
as well as fluids having shorter molecules. Research alongp_ ;. Tidesley and W. B. Streett, Mol. Physl, 85 (1980.

these lines is continuing in our laboratory. %43, D. Mehta and K. G. Honnell, J. Phys. Chet00, 10408(1996.

0 2 4 6 8 10 12

Downloaded 10 Nov 2003 to 147.96.5.37. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



