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Critical properties of molecular fluids from the virial series
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We present results for the fourth virial coefficient of quadrupolar Lennard-Jones diatomics for
several quadrupole moments and elongations. The coefficients are employed to predict the critical
properties from two different truncated virial series. The first one employs the exact second and third
virial coefficients, calculated in our previous work. The second includes also the exact fourth virial
coefficient as obtained in this work. It is found that the first method yields already fairly good
predictions. The second method significantly improves on the first one, however, yielding good
results for both the critical temperature and pressure. Particularly, when compared with predictions
from perturbation theories available in the literature, the virial series to fourth order compares
favorably for the critical temperature. The results suggest that the failure of perturbation theories to
predict the critical temperature and pressure is not only related to the neglect of density fluctuations,
but also to poor prediction of the virial coefficients. ©2003 American Institute of Physics.
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I. INTRODUCTION

The virial series is a simple and physically based eq
tion of state which allows to describe thepVT behavior over
a wide range of conditions, as well as to explore the natur
molecular interactions.1 Despite of its formal simplicity, the
use of this equation of state has been limited, since b
experimental and theoretical calculations beyond the sec
virial coefficient have proven to be rather difficult.2 Never-
theless, the study of virial coefficients has been extrem
fruitful in the development of widely employed equations
state for hard fluids, such as hard spheres,3 hard convex
bodies,4 or even hard sphere chain fluids.5 The information
on virial coefficients of more realistic fluids incorporatin
attractive interactions is much more limited, however. Co
prehensive data of the higher virial coefficients over a w
range of temperatures is available only for simple atom
fluids, such as the square well,6 and the Lennard-Jones.7–9

For molecular fluids, however, only a few calculations of t
third virial coefficients have been reported,10–13and very few
less, if any, for higher order coefficients. Despite this lack
knowledge, the virial series of simple molecular fluids h
attracted much attention recently. First, it has been rec
nized that the knowledge of just a few virial coefficients m
provide a simple and accurate equation of state for use in
field of supercritical extraction.13–15Second, it has been als
observed that the series performs rather well very close to
critical point, providing accurate estimates of the critic
properties.12,16,17Actually, this idea had been exploited lon
time ago. By using numerical results for the second, th
and fourth virial coefficients of the Lennard-Jones flu
Barker and Monaghan estimated the critical temperatur
bekBTc /e51.300.6 This prediction is not only in very good
11360021-9606/2003/119(21)/11367/7/$20.00
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agreement with presently available results, i.e.,kBTc /e
51.309;18 it is also more accurate than the extrapolati
obtained some years later from computer simulatio
(kBTc/e51.36),19 and accepted for about two decades~see,
e.g., Ref. 20!. Fortunately, the computational resources pr
ently available allow us to calculate, for the first time, four
virial coefficients of molecular models with attractive force
thus allowing to test the generality of this idea for a gre
variety of models.

The remaining of this paper is organized as follows.
the next section we introduce the model and describe
numerical method employed to calculate fourth virial coe
cients. In Sec. III we present and discuss the results. Fin
in Sec. IV we present our conclusions.

II. MODEL AND CALCULATION DETAILS

We will henceforth consider Lennard-Jones diatom
molecules with bond lengthL and an embedded point quad
rupole. The full interaction potential may be expressed a

u~1,2!5(
i 51

2

(
j 51

2

ui j
LJ~1,2!1uQQ~1,2!, ~1!

whereui j are site–site Lennard-Jones potentials which o
depend on the distance,di j between the sites,

ui j
LJ54eH S s

di j
D 12

2S s

di j
D 6J ~2!

while uQQ is a quadrupole potential which depends on t
total quadrupole moment,Q, the distance between the cent
of the molecules,r 12, and their relative orientation:21
7 © 2003 American Institute of Physics
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uQQ5
3Q2

4r 12
5 ~125~c1

21c2
213c1

2c2
2!12~s1s2c1224c1c2!2!,

~3!

whereci5cosui , si5sinui , andc125cos(f22f1), while u i

andf i are the polar and azimuthal angles required to spe
the orientation of moleculei. Since the quadrupole potentia
shows a divergence for molecules whose center of mass
incides, the Lennard-Jones interaction sites are embedde
hard spheres of diameters/&. Such a diameter is the smal
est choice one can make in order to avoid overflow of
Boltzmann factor for overlapping molecules with bon
lengthL51.0,

The fourth virial coefficient,B4 , is calculated as a sum
of three different contributions,1,21

B453D416D51D6 . ~4!

Each of the terms in the sum is obtained as a multidim
sional integral of the form1,21

Dk52
1

8V E E E ^Gk&v1 ,v2 ,v3 ,v4
dr1 dr2 dr3 dr4 , ~5!

where^¯&v1 ,v2 ,v3 ,v4
denotes an unweighted average ov

molecular orientations, andGk are products of Mayer func
tions, f i j 5exp(2u(i,j)/kBT)21,

G45 f 12f 23f 34f 41, ~6!

G55 f 12f 23f 34f 41f 13, ~7!

G65 f 12f 23f 34f 41f 13f 24. ~8!

For linear molecules as the ones considered in this work,
seen that the calculation of the fourth virial coefficient i
volves a 20-dimensional integral. Taking into account tra
lational and rotational invariance, the integral is reduced t
14-dimensional quadrature. Owing to the high dimension
ity of the integral, the evaluation of fourth virial coefficien
has become feasible only recently. In practice, the inte
must be solved using a Monte Carlo method. The proced
is essentially that described previously for the calculation
B3 ,22 with the difference that one must further sample t
five degrees of freedom specifying the position and orien
tion of the fourth molecule. Sampling of the fourth molecu
is performed in the same way as for the third molecule
calculations ofB3 . A detailed account of the methodolog
may be found elsewhere.22 By randomly sampling the con
figurations as specified, theDk coefficients involved in the
calculation ofB3 are given by

Dk5223p3Rmax
3 1

Nt
(
Nt

Gkr 12
2 r 13

2 r 14
2 . ~9!
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In the above equation,Nt is the total number of configura
tions considered, whileRmax is the largest distance awa
from the origin where the centers of molecules we
sampled. If we assume that the Mayer function vanishes
center to center distances larger thanr c , then, geometrical
considerations allow us to setRmax52rc .

In our previous calculations forB3 we have shown tha
increasingr c beyondr c /s55 does not result in a significan
improvement. The reason is that the statistical error bars v
much increase with increasingr c , so that whichever gain in
accuracy due to better convergence is disguised by the
creased error bars. As expected, similar difficulties w
found forB4 , so that we keep this value here for consisten
A single B4 calculation involved averaging 200 independe
blocks, while each block was obtained as a Monte Ca
average over 903106 configurations. The calculations wer
performed in a dual 2000 MHz Athlon machine. A sing
processor could deal with 2003303106 configurations in
about 11 hours of cpu time. Despite the considerable co
putational effort, the error in the calculations is about 5% b
may be much larger for the lowest temperatures conside

III. RESULTS AND DISCUSSION

Calculations were performed for five different elong
tions, L/s50.2, 0.4, 0.6, 0.8, and 1.0. For each elongatio
five different reduced square quadrupoles were conside
Q2/es550, 1, 2, 3, and 4. Calculations forL/s50 and two
quadrupoles,Q2/es551, 2 were also performed. Resul
were obtained for five different temperatures ranging
tween 0.85 and 1.15 times the critical temperature as
tained from computer simulations.18 We have checked ou
code by comparing with bibliographic results for th
Lennard-Jones fluid,7,9 and for hard-dumbbells.4 Good agree-
ment was found in all cases.

TABLE I. Cluster integrals required in the calculation ofB4 . Results are
shown forL/s51 and two quadrupole moments. The numbers in paren
ses are the estimated error bars~not available forQ2/es551). Note that the
integrals are multiplied by the appropriate weights@cf. Eq. ~4!#.

Q2/es5 kBT/e 33D4 /s9 63D5 /s9 13D6 /s9

0.0 1.569 91 2372~2! 384~2! 7.4~0.7!

0.0 1.708 43 2219~1! 246~1! 0.13~0.4!

0.0 1.846 95 2143~1! 169~1! 24.0~0.2!

0.0 1.985 47 2104~5! 125~1! 25.2~0.2!

0.0 2.123 99 281.7~0.4! 99.4~0.4! 25.9~0.1!

1.0 1.591 97 2396 402 10.7

1.0 1.732 44 2227 256 0.35

1.0 1.872 91 2146 174 23.2

1.0 2.013 38 2105 126 25.0

1.0 2.153 84 280 100 25.7
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In Table I we show the contributions toB4 which arise
from the graphsG4 , G5 , and G6 . Results are shown fo
L/s51, Q2/es550, 1 and several temperatures. Note th
D4 , D5 , andD6 have been multiplied by their correspon
ing weight factors~i.e., 3, 6, and 1, respectively!, so that
their relative contribution toB4 may be observed at once
The first five rows of the table show results forL/s51,
Q2/es550 for five different temperatures ranging from 0.8
and 1.15 times the critical temperature. Inspection of the d
explain the temperature dependence observed forB4 , as well
as the large error bars which arise in the numerical calc
tion of B4 . Typically, it is found that the contributions aris
ing from D4 andD5 are large, similar in absolute values, b
of opposite sign. On the other hand,D6 is small, and of
similar order of magnitude than the difference betweenD4

and D5 . For this reason, the final value forB4 is of much
smaller magnitude thanD4 andD5 . As a result, small rela-
tive errors in these coefficients result in a large relative e
in B4 . It is also interesting to note the temperature dep
dence ofD4 , D5 , andD6 . As the temperature is increase
aboveTc , the absolute values ofD4 andD5 become smaller,
while that ofD6 becomes larger. Accordingly, as temperatu
increases the relative contribution ofD6 becomes more im-
portant. Note also that the contribution due toD4 decreases
faster than that ofD5 , so that their sum gradually become
more positive. This effect is balanced by increasing nega
values ofD6 . The overall result of this competition is th
appearance of a maximum inB4 , close to the critical tem-
perature.

The results for the fourth virial coefficients calculated
this work are gathered in Table II. Despite the lengthy c
culations, the error bars are found to be rather large, e
cially at low temperatures. Also note that the error bars
crease systematically with increasing elongation. For all
models considered,B4 is found to be positive at the critica
point. As an example, Fig. 1 shows a plot ofB4 as a function
of temperature forL/s50.2 andL/s50.6 and several qua
drupoles, where it is seen that within the temperature ra
consideredB4 remains positive. We find that when the tem
perature is expressed in units of the critical temperature,
results for a given elongation but different quadrupo
roughly collapse into a single curve, so that in this scale
effect of the quadrupole may be neglected, particularly
high temperature. Note, however, that this behavior is l
clearly observed forL50.6, especially at the lower temper
tures. Nevertheless, for the higher temperatures the resul
seem to collapse within statistical accuracy, while the la
error bars for the two lowest temperatures make this co
parison somewhat difficult.

One useful application of the virial series is the pred
tion of critical properties. To this end, we consider two d
ferent truncated virial series. The first one~VSB3! is trun-
cated to third order, so that the equation of state is

p~r,T!

kBT
5r1B2~T!r21B3~T!r3, ~10!
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where B2 and B3 are taken from work reported
previously.23,22 In a second approximation~VSB4!, we at-
tempt to improve on the previous equation by considerin
virial series truncated to fourth order, using the results of t
work for B4 ,

p~r,T!

kBT
5r1B2~T!r21B3~T!r31B4~T!r4. ~11!

In order to obtain the critical properties from these series,
fit our numerical results forB3 and B4 to sixth and second
order polynomials in exp(e/kBT), respectively.

In Fig. 2 we show results for the critical temperatu
obtained from the two different series for models withL/s
50.2, 0.4, 0.6, and 0.8. The theoretical predictions are co
pared with computer simulation results obtained by S
et al.18 It is found that VSB3 already yields reasonable r
sults, especially for those models with larger bond distanc
Using the exact value forB4 , however, improves the situa
tion significantly, yielding predictions for the critical tem
perature which typically lie within 1% of the simulation re
sults. Also note that VSB3 systematically over predictsTc ,
while VSB4 always under predictsTc , so that the two meth-
ods would seem to bracket the simulation results.

A similar plot for the critical pressure is shown in Fig.
with results forL/s50.2, 0.4, and 0.8. As for the critica
temperature, VSB3 systematically over predicts the simu
tion results, while VSB4 systematically under predicts t
results, although the latter approximation is clearly in bet
agreement. Once more, the agreement seems to improve
those models with larger bond length.

Finally, predictions for the critical density are shown
Fig. 4. Only results forL/s50.2 and 0.8 are shown, for th
sake of clarity. In this case it is found that VSB3 and VSB
still bracket the simulation results, but the agreement is ov
all not as good. Surprisingly, in this case VSB3 is eve
where in better agreement than VSB4.

The reason for the poor performance of VSB4 in predi
ing the critical density may be explained as follows. It h
been shown that the critical compressibility factor of a vir
series of orderk is given, to a first approximation, by th
following equation:24–26

Zc5
1

3
1H~k23!(

i 54

k

BiY uB2u i 21, ~12!

whereH( l ) is a Heaviside step function. For a series tru
cated at third order,Zc is 1/3. Fork54, one must add to this
a term linear inB4 . SinceB4 was shown to be positive at th
critical point for all the models considered, it is clear thatZc

becomes even larger than 1/3. Actually, experimental crit
compressibility factors are usually smaller than 1/3, so t
addingB4 to the virial series results in a poorer agreeme
for the critical density.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Results for the fourth virial coefficient of quadrupolar Lennard-Jones diatomics for different bond lengthL and quadrupole,Q. DB4 stands for the
error bars obtained as 1/ANt21 times the standard deviation of the mean.

L/s Q2/es5 kBT/e B4 /s9 6DB4 /s9 L/s Q2/es5 kBT/e B4 /s9 6DB4 /s9
0.0 1.0 1.3600 0.69 0.39
0.0 1.0 1.4800 2.35 0.21
0.0 1.0 1.6000 2.17 0.12
0.0 1.0 1.7200 1.90 0.08
0.0 1.0 1.8400 1.50 0.06
0.0 2.0 1.9125 1.83 1.72
0.0 2.0 2.0812 2.24 0.73
0.0 2.0 2.2500 1.43 0.38
0.0 2.0 2.4188 1.13 0.24
0.0 2.0 2.5875 0.69 0.13
0.2 0.0 3.6473 3.24 0.16
0.2 0.0 3.9691 4.54 0.11
0.2 0.0 4.2909 4.29 0.07
0.2 0.0 4.6128 3.70 0.05
0.2 0.0 4.9346 3.14 0.04
0.2 1.0 3.7053 3.23 0.18
0.2 1.0 4.0322 4.47 0.12
0.2 1.0 4.3592 4.29 0.08
0.2 1.0 4.6861 3.64 0.05
0.2 1.0 5.0130 3.09 0.04
0.2 2.0 3.8628 2.27 0.33
0.2 2.0 4.2036 4.39 0.20
0.2 2.0 4.5445 4.31 0.12
0.2 2.0 4.8853 3.39 0.09
0.2 2.0 5.2261 2.85 0.07
0.2 3.0 4.0952 1.63 0.51
0.2 3.0 4.4565 4.19 0.28
0.2 3.0 4.8178 4.24 0.18
0.2 3.0 5.1792 3.10 0.12
0.2 3.0 5.5405 2.63 0.09
0.2 4.0 4.3777 1.08 0.79
0.2 4.0 4.7640 3.94 0.41
0.2 4.0 5.1503 4.18 0.26
0.2 4.0 5.5365 2.77 0.17
0.2 4.0 5.9228 2.39 0.11
0.4 0.0 2.6856 5.57 0.37
0.4 0.0 2.9225 8.54 0.25
0.4 0.0 3.1595 7.77 0.17
0.4 0.0 3.3965 6.42 0.11
0.4 0.0 3.6334 5.23 0.09
0.4 1.0 2.7197 5.84 0.40
0.4 1.0 2.9596 8.29 0.25
0.4 1.0 3.1996 7.91 0.18
0.4 1.0 3.4396 6.52 0.12
0.4 1.0 3.6795 5.29 0.09
0.4 2.0 2.8139 5.78 0.53
0.4 2.0 3.0622 7.80 0.31
0.4 2.0 3.3105 7.83 0.22
0.4 2.0 3.5587 6.44 0.14
0.4 2.0 3.8070 5.16 0.11
0.4 3.0 2.9563 3.92 1.02
0.4 3.0 3.2171 7.34 0.60
0.4 3.0 3.4780 7.79 0.36
0.4 3.0 3.7388 5.92 0.26
0.4 3.0 3.9997 4.95 0.17
0.4 4.0 3.1349 2.21 1.47
0.4 4.0 3.4115 6.36 0.84
0.4 4.0 3.6881 7.44 0.50
0.4 4.0 3.9647 5.54 0.34
0.4 4.0 4.2413 4.67 0.21
0.6 0.0 2.0926 9.59 1.23
0.6 0.0 2.2773 13.63 0.69
0.6 0.0 2.4619 13.06 0.48
0.6 0.0 2.6465 10.12 0.33
0.6 0.0 2.8312 7.85 0.24
0.6 1.0 2.1183 9.62 1.34
0.6 1.0 2.3052 13.80 0.75
0.6 1.0 2.4922 13.64 0.49
Downloaded 18 Nov 2003 to 147.96.7.229. Redistribution subject to AI
0.6 1.0 2.6791 10.34 0.35
0.6 1.0 2.8660 8.16 0.25
0.6 2.0 2.1895 8.42 1.75
0.6 2.0 2.3826 12.82 0.96
0.6 2.0 2.5758 13.73 0.57
0.6 2.0 2.7690 10.03 0.41
0.6 2.0 2.9622 8.02 0.29
0.6 3.0 2.2969 6.43 2.45
0.6 3.0 2.4996 10.83 1.31
0.6 3.0 2.7023 13.46 0.73
0.6 3.0 2.9049 9.37 0.50
0.6 3.0 3.1076 7.56 0.34
0.6 4.0 2.4317 5.22 3.05
0.6 4.0 2.6463 9.16 1.51
0.6 4.0 2.8608 12.06 0.91
0.6 4.0 3.0754 9.21 0.58
0.6 4.0 3.2899 7.09 0.40
0.8 0.0 1.7449 11.72 1.96
0.8 0.0 1.8989 20.91 1.27
0.8 0.0 2.0529 18.13 0.81
0.8 0.0 2.2068 14.33 0.55
0.8 0.0 2.3608 10.90 0.47
0.8 1.0 1.7686 10.71 2.19
0.8 1.0 1.9246 21.62 1.44
0.8 1.0 2.0807 19.80 0.89
0.8 1.0 2.2367 15.37 0.61
0.8 1.0 2.3928 11.89 0.52
0.8 2.0 1.8331 7.15 3.25
0.8 2.0 1.9948 21.25 1.83
0.8 2.0 2.1566 19.98 1.09
0.8 2.0 2.3183 15.23 0.75
0.8 2.0 2.4801 11.91 0.60
0.8 3.0 1.9291 1.33 5.16
0.8 3.0 2.0993 19.98 2.44
0.8 3.0 2.2695 19.16 1.43
0.8 3.0 2.4397 14.33 0.96
0.8 3.0 2.6099 11.29 0.72
0.8 4.0 2.0470 27.19 7.95
0.8 4.0 2.2276 17.91 3.37
0.8 4.0 2.4083 17.75 1.93
0.8 4.0 2.5889 13.13 1.24
0.8 4.0 2.7695 10.33 0.88
1.0 0.0 1.5699 21.61 2.91
1.0 0.0 1.7084 24.80 1.82
1.0 0.0 1.8470 20.02 1.14
1.0 0.0 1.9855 15.73 0.79
1.0 0.0 2.1240 12.36 0.54
1.0 1.0 1.5920 16.67 3.20
1.0 1.0 1.7324 29.33 1.73
1.0 1.0 1.8729 23.99 1.12
1.0 1.0 2.0134 16.03 0.68
1.0 1.0 2.1538 14.23 0.47
1.0 2.0 1.6520 9.86 6.04
1.0 2.0 1.7977 23.55 3.26
1.0 2.0 1.9435 22.55 1.98
1.0 2.0 2.0892 18.58 1.23
1.0 2.0 2.2350 13.53 0.87
1.0 3.0 1.7405 21.75 11.38
1.0 3.0 1.8941 21.40 5.60
1.0 3.0 2.0477 20.48 3.19
1.0 3.0 2.2013 16.98 1.78
1.0 3.0 2.3549 12.97 1.20
1.0 4.0 1.8484 213.40 23.09
1.0 4.0 2.0115 20.68 10.66
1.0 4.0 2.1746 18.31 5.72
1.0 4.0 2.3377 14.58 2.78
1.0 4.0 2.5008 12.33 1.75
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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It is also interesting to note that the critical dens
seems to be far less sensitive to changes in the quadru
moment than the critical temperature and pressure. Su
behavior is probably the result of several factors, and a th
ough explanation would be presumably rather involv
However, a simple explanation may be given in terms o
van der Waals mean field theory.27 In such theories, one
writes down the free energy in terms of two contribution
The first one is related to the short range repulsive inte
tions; the second one includes the effect of all attract
forces in a mean field approximation. For such a perturba
expansion, one can show that the critical density only
pends on molecular parameters related to the harsh repu
forces~i.e., molecular elongation and volume!.28 Hence, to a
first approximation the critical density may be considered
depend only on the shape, but not on the quadrupolar in
actions. According to this simple theoretical treatment,
the other hand, both critical temperature and pressure de

FIG. 1. Fourth virial coefficients as a function of temperature forL/s
50.2 ~filled symbols! andL/s50.6 ~empty symbols!; circles, squares, dia-
monds, triangle up, and triangle down correspond toQ2/es550, 1, 2, 3, and
4, respectively.

FIG. 2. Critical temperatures for different elongations as a function of
quadrupole moment. Symbols, simulation results from Ref. 18: circ
L/s50.2; squares,L/s50.4; diamonds,L/s50.6; triangles,L/s50.8;
lines, theoretical estimates, VSB3~dashed line!, VSB4 ~full line!.
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on the van der Waals constants, which accounts for the
tractive interactions.28 Therefore, to this low order approxi
mation, the critical density should be less sensitive
changes in the quadrupole moment than the critical temp
ture and pressure.

An improvement of the predictions from the virial serie
with increasing anisotropy of the molecular core is observ
This trend could be expected, since the critical density o
molecule decreases with increasing anisotropy. Since
predictions are based on the virial series, one would t
expect that they become the more accurate the smaller
critical density. However, the explanation may be somew
more complicated. For example, in the case of the Lenna
Jones fluid, the critical temperature and pressure predi
from a virial series truncated to fourth order arekBTc /e
51.300 ands3pc /e50.122,6 in good agreement with com
puter simulation results,18 kBTc /e51.309 and s3pc /e
50.118.~Note that the prediction for the critical temperatur
kBTc /e51.33 made by Panagiotopoulos,29 has been revised
and lowered by several authors in later work.30,31,18! The
agreement is far less satisfactory for the critical density, ho
ever. Indeed, the virial series predictss3rc50.268;6 while
the simulation result iss3rc50.31.29–31,18For the Lennard-
Jones fluid and an embedded point quadrupole ofQ2/es5

e
,

FIG. 3. As in Fig. 2 but for the critical pressure.

FIG. 4. As in Fig. 2 but for the critical density.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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51, VSB4 predicts kBTc /e51.60, s3pc /e50.16, and
s3rc50.28, to be compared with the simulation resu
kBTc /e51.60, s3pc /e50.15, and s3rc50.34. For
Q2/es552, on the other hand, VSB4 predictskBTc /e
52.18 ands3rc50.28, while according to simulation re
sults,kBTc /e52.25 ands3rc50.38.32,30Apparently, the de-
crease of accuracy with decreasing anisotropy affects
critical density much more than the critical temperature a
pressure. We do note, however, that the predictions fr
VSB4 are subject to some statistical uncertainty, arising fr
the uncertainty in the virial coefficients themselves. In ord
to summarize these findings, Table III compares the crit
properties obtained from simulation with those predicted
VSB4, for a number of models. From the table, it is seen t
the performance of VSB4 increases with increasing elon
tion, although the results forL/s50 are quite fair. The table
also shows that the performance of VSB4 remains good
large quadrupole moments.

It would be interesting to compare the predictions o
tained from VSB3 and VSB4 to predictions from thermod
namic perturbation theories. Unfortunately, these are usu
numerically involved, and not that many results are av
able. In the literature we could only find predictions for cri
cal properties of the Lennard-Jones plus quadrupole mom
Shing and Gubbins considered a perturbation theory to t
order, cast on the form of a Pade´ approximant.33 For a model
with Q2/es552, they found kBTc /e52.38 and s3rc

50.40.34 Similarly, using the linearized hypernetted chain
generalized mean field~LHNC–GMF!,35,36 they predict
kBTc /e52.43 ands3rc50.41.34 A Padéapproximant based
on an approach by Twuet al.37 was also employed by Staple
ton et al.32 for Q2/es551. Unfortunately, these authors d
not give tabulated critical properties. From visual inspecti
however, we estimatekBTc /e'1.65. Comparing these re
sults with those obtained from VSB4 and simulations~cf.
preceding paragraph and Table III! it would seem that VSB4
performs better for the critical temperature, while both t
Padéapproximant and LHNC–GMF seem to yield bett
predictions for the critical density.

TABLE III. Critical properties for some selected molecular models w
bond lengthL and quadrupole momentQ. The numbers on the left-hand sid
of the columns indicate simulation results from Ref. 18~except second
column, results from Refs. 32 and 30!, while the numbers on the right-han
side indicate predictions as obtained from VSB4.

L/s Q2/es5 kBTc /e s3pc /e s3rc

0.0 1.0 1.600 1.603 0.1486 0.1582 0.3395 0.281
0.0 2.0 2.25 2.18 0.25 0.21 0.38 0.28
0.2 0.0 4.313 4.274 0.3670 0.3499 0.2740 0.232
0.2 4.0 5.143 5.002 0.4460 0.4203 0.2908 0.238
0.4 0.0 3.163 3.113 0.2116 0.2018 0.2251 0.184
0.4 4.0 3.692 3.691 0.2540 0.2510 0.2358 0.194
0.6 0.0 2.454 2.410 0.1353 0.1278 0.1850 0.152
0.6 4.0 2.866 2.837 0.1665 0.1596 0.1960 0.161
0.8 0.0 2.049 2.001 0.0995 0.0909 0.1577 0.130
0.8 4.0 2.408 2.341 0.1140 0.1098 0.1710 0.134
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IV. CONCLUSIONS

In summary, we have shown that a virial series trunca
to fourth order yields good results for the critical temperatu
and pressure. The convergence of the series to this ord
still, however, not fully satisfactory, because the agreem
for the critical density is worse than that obtained for t
series truncated to third order. The convergence is poss
very slow, and our experience on the calculation ofB4 shows
that the precise evaluation ofB5 and higher order coeffi-
cients may be extremely time consuming. Nevertheless,
results suggest that the failure of classical theories to pre
accurate critical temperatures and pressures is not only
lated to the neglect of fluctuations, but also, perhaps t
greater extent, to a poor prediction of the first few viri
coefficients. An accurate prediction of the critical dens
from the virial series does seem unlikely, however.
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