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Critical properties of molecular fluids from the virial series
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We present results for the fourth virial coefficient of quadrupolar Lennard-Jones diatomics for
several quadrupole moments and elongations. The coefficients are employed to predict the critical
properties from two different truncated virial series. The first one employs the exact second and third
virial coefficients, calculated in our previous work. The second includes also the exact fourth virial
coefficient as obtained in this work. It is found that the first method yields already fairly good
predictions. The second method significantly improves on the first one, however, yielding good
results for both the critical temperature and pressure. Particularly, when compared with predictions
from perturbation theories available in the literature, the virial series to fourth order compares
favorably for the critical temperature. The results suggest that the failure of perturbation theories to
predict the critical temperature and pressure is not only related to the neglect of density fluctuations,
but also to poor prediction of the virial coefficients. D03 American Institute of Physics.
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I. INTRODUCTION agreement with presently available results, ikgT./€
=1.3091% it is also more accurate than the extrapolation
The virial series is a simple and physically based equaebtained some years later from computer simulations
tion of state which allows to describe tp& T behavior over  (kgT./e=1.36)° and accepted for about two decadsse,
a wide range of conditions, as well as to explore the nature of.g., Ref. 20. Fortunately, the computational resources pres-
molecular interaction$ Despite of its formal simplicity, the ently available allow us to calculate, for the first time, fourth
use of this equation of state has been limited, since bothirial coefficients of molecular models with attractive forces,
experimental and theoretical calculations beyond the seconthus allowing to test the generality of this idea for a great
virial coefficient have proven to be rather difficélNever-  variety of models.
theless, the study of virial coefficients has been extremely The remaining of this paper is organized as follows. In
fruitful in the development of widely employed equations of the next section we introduce the model and describe the
state for hard fluids, such as hard sphérémrd convex numerical method employed to calculate fourth virial coeffi-
bodies? or even hard sphere chain fluitldhe information  cients. In Sec. Ill we present and discuss the results. Finally,
on virial coefficients of more realistic fluids incorporating in Sec. IV we present our conclusions.
attractive interactions is much more limited, however. Com-
prehensive data of the higher virial coefficients over a wide
range of temperatures is available only for simple a_tomic”_ MODEL AND CALCULATION DETAILS
fluids, such as the square welgnd the Lennard-Jonés®
For molecular fluids, however, only a few calculations of the  We will henceforth consider Lennard-Jones diatomic
third virial coefficients have been report¥i*2and very few  molecules with bond length and an embedded point quad-
less, if any, for higher order coefficients. Despite this lack ofrupole. The full interaction potential may be expressed as
knowledge, the virial series of simple molecular fluids has
attracted much attention recently. First, it has been recog-
nized that the knowledge of just a few virial coefficients may
provide a simple and accurate equation of state for use in the ) ) ) )
field of supercritical extractio®'°Second, it has been also Whereu;; are site—site Lennard-Jones potentials which only
observed that the series performs rather well very close to th@€Pend on the distance;; between the sites,
critical point, providing accurate estimates of the critical o\12 [ 5\6
dij) (dij) ] @

properties->1¢1"Actually, this idea had been exploited long uiLJ-J=46[
time ago. By using numerical results for the second, third,

and fourth virial coefficients of the Lennard-Jones fluid, while ugq is a quadrupole potential which depends on the
Barker and Monaghan estimated the critical temperature ttotal quadrupole momen®, the distance between the center
bekgT./e=1.300° This prediction is not only in very good of the moleculest ;,, and their relative orientatioft:

2 2
u(1,2)=i21 2}1 uf(1,2+ugo(1,2), (1)
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2 TABLE |. Cluster integrals required in the calculation Bf. Results are
— _ 2 2 2.2 _ 2 shown forL/o=1 and two quadrupole moments. The numbers in parenthe-
Uoo=—%(1—5(cf+c5+3cic5) +2(S1S,C1,—4C1Co)7), . .
QQ riz( ( 1 2 1 2) ( 1°2%12 1 2) ) ses are the estimated error baist available foiQ% eo®=1). Note that the
3 integrals are multiplied by the appropriate weigfts Eq. (4)].

wherec;=cos#, s;=sin 6, andc,,=cos(@,— ¢,), while 6, Qfes keTle 3%Dalo”  6xDslo?  1xDslo?
and ¢; are the polar and azimuthal angles required to specify ¢ 1.569 91 —3722) 384(2) 7.40.7)
tf;}e orientgtion of molfeculé ISincle thehquadrupsle pfotential 0.0 1.708 43 —2191) 246(1) 0.130.4)
w ivergen rm w nter of m -
iSncci)deSs,athe ﬁegnenefred-;one(s) ﬁwigrgitiono;teegearee er%beggzdcgy 00 184695 —1A 1640) 4002
hard spheres of diametefv2. Such a diameter is the small- 0.0 1.98547 —1049 1251) —5.202
est choice one can make in order to avoid overflow of the 0.0 212399  -81L.704 99.40.4 -5.90.0)
Boltzmann factor for overlapping molecules with bond 1.0 1.591 97 —396 402 10.7
lengthL=1.0, 1.0 1.732 44 —227 256 0.35
The fo_urth virial cqeffigientfm is calculated as a sum 10 187291 _146 174 39
of three different contribution’? 10 501338 105 126 5o
1.0 2.15384 -80 100 -5.7

B,=3D,+6Dg+ Dg. 4

Each of the terms in the sum is obtained as a multidimen-
sional integral of the forh?!

In the above equatiori, is the total number of configura-
1 tions considered, whildR . iS the largest distance away
D=~ WJ j J’ <Gk>w1’wz'w3’w4drldr2dr3dr4* ®)  from the origin where the centers of molecules were
sampled. If we assume that the Mayer function vanishes for
center to center distances larger than then, geometrical
considerations allow us to sB,,=2rc.
In our previous calculations fdB; we have shown that

where(---)wl'ww,s'w‘l denotes an unweighted average over
molecular orientations, an@, are products of Mayer func-

tions, f;; =exp(-u(i.j)/ksT) 1, increasing . beyondr./o=5 does not result in a significant
improvement. The reason is that the statistical error bars very
Ga=frfosfarf (6) much increase with increasing, so that whichever gain in
47 112123134141

accuracy due to better convergence is disguised by the in-
creased error bars. As expected, similar difficulties were

Gs=f1of23f 34f 41f 13, (7)  found forB,, so that we keep this value here for consistency.
A single B, calculation involved averaging 200 independent
Ge=f1of 2af 3afasf 13 24 (8)  blocks, while each block was obtained as a Monte Carlo

average over 99 10° configurations. The calculations were
performed in a dual 2000 MHz Athlon machine. A single
For linear molecules as the ones considered in this work, it iprocessor could deal with 20B0x 10° configurations in
seen that the calculation of the fourth virial coefficient in- about 11 hours of cpu time. Despite the considerable com-
volves a 20-dimensional integral. Taking into account transputational effort, the error in the calculations is about 5% but
lational and rotational invariance, the integral is reduced to anay be much larger for the lowest temperatures considered.
14-dimensional quadrature. Owing to the high dimensional-
ity of the integral, the evaluation of fourth virial coefficients
has become feasible only recently. In practice, the integral
must be solved using a Monte Carlo method. The procedure
is essentially that described previously for the calculation ofll. RESULTS AND DISCUSSION
B3,2? with the difference that one must further sample the
five degrees of freedom specifying the position and orienta- ~ Calculations were performed for five different elonga-
tion of the fourth molecule. Sampling of the fourth moleculetions,L/a=0.2, 0.4, 0.6, 0.8, and 1.0. For each elongation,
is performed in the same way as for the third molecule infive different reduced square quadrupoles were considered,
calculations ofB;. A detailed account of the methodology Q/€0°=0, 1, 2, 3, and 4. Calculations ftw/o=0 and two
may be found elsewhef@.By randomly sampling the con- duadrupolesQ®es°=1, 2 were also performed. Results
figurations as specified, th@, coefficients involved in the Were obtained for five different temperatures ranging be-

calculation ofB5 are given by tween 0.85 and 1.15 times the critical temperature as ob-
tained from computer simulatiorl8.We have checked our
1M code by comparing with bibliographic results for the
(79
D= _stsRﬁ]aWE Gkrizriarizp (9) Lennard-Jones flyla, and for hard-dumbbelt$Good agree-
t ment was found in all cases.
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In Table | we show the contributions 8, which arise where B, and B; are taken from work reported
from the graphsG,, Gs, and G4. Results are shown for previously*>?? In a second approximatiotVSB4), we at-
L/o=1, Q% ec®=0, 1 and several temperatures. Note thattempt to improve on the previous equation by considering a
D,, D5, andDg have been multiplied by their correspond- Virial series truncated to fourth order, using the results of this
ing weight factors(i.e., 3, 6, and 1, respectivélyso that work for By,
their relative contribution td8, may be observed at once.

The first five rows of the table show results fofo=1,

Q?/ ea®=0 for five different temperatures ranging from 0.85  p(p,T)
and 1.15 times the critical temperature. Inspection of the data kT
explain the temperature dependence observeB foras well

as the large error bars which arise in the numerical calcula-

tion of B,. Typically, it is found that the contributions aris- |n order to obtain the critical properties from these series, we
ing from D, andD5 are large, similar in absolute values, but fit our numerical results foB; and B, to sixth and second

of opposite sign. On the other hanDg is small, and of  order polynomials in expg(ksT), respectively.

similar order of magnitude than the difference betw&en In Fig. 2 we show results for the critical temperature
andDs. For this reason, the final value f@, is of much  obtained from the two different series for models withr
smaller magnitude thab, andDs. As a result, small rela- =0.2, 0.4, 0.6, and 0.8. The theoretical predictions are com-
tive errors in these coefficients result in a large relative erropared with computer simulation results obtained by Stoll
in B,. It is also interesting to note the temperature depenet alX® It is found that VSB3 already yields reasonable re-
dence ofD,, Ds, andDg. As the temperature is increased sults, especially for those models with larger bond distances.
aboveT,, the absolute values &, andDs become smaller, Using the exact value foB,, however, improves the situa-
while that of D4 becomes larger. Accordingly, as temperaturetion significantly, yielding predictions for the critical tem-
increases the relative contribution Bf; becomes more im-  perature which typically lie within 1% of the simulation re-
portant. Note also that the contribution dueDg decreases Sults. Also note that VSB3 systematically over preditts
faster than that oD5, so that their sum gradually becomes While VSB4 always under predict;, so that the two meth-
more positive. This effect is balanced by increasing negativ@ds would seem to bracket the simulation results.
values ofDg. The overall result of this competition is the A Similar plot for the critical pressure is shown in Fig. 3,

appearance of a maximum By, close to the critical tem- with results forL/oc=0.2, 0.4, and 0.8. As for the critical
perature. temperature, VSB3 systematically over predicts the simula-

The results for the fourth virial coefficients calculated in tion results, while VSB4 systematically under predicts the

this work are gathered in Table II. Despite the lengthy Cal_results, although the latter approximation is clearly in better

culations, the error bars are found to be rather large, esp greement. Once more, the agreement seems to improve with

. .~ those models with larger bond length.
cially at low temperatures. Also note that the error bars in- : L i . .
: o . . Finally, predictions for the critical density are shown in
crease systematically with increasing elongation. For all the..

) . o - ?:|g. 4. Only results fot./o=0.2 and 0.8 are shown, for the
quels considereds, |s_found to be positive at the C”_t'cal sake of clarity. In this case it is found that VSB3 and VSB4
point. As an example, Fig. 1 shows a plotR®)f as a function

still bracket the simulation results, but the agreement is over-
of temperature fot./o0=0.2 andL/o=0.6 and several qua-

o o all not as good. Surprisingly, in this case VSB3 is every-
drupoles, where it is seen that within the temperature rangghere in better agreement than VSBA4.

considered3, remains positive. We find that when the tem- ¢ reason for the poor performance of VSB4 in predict-
perature is exprgssed in un|t§ of the cr|t.|cal temperature, thﬁlg the critical density may be explained as follows. It has
results for a given elongation but different quadrupolepeen shown that the critical compressibility factor of a virial

roughly collapse into a single curve, so that in this scale thegries of ordek is given, to a first approximation, by the
effect of the quadrupole may be neglected, particularly atollowing equatior?*~2°

high temperature. Note, however, that this behavior is less
clearly observed fok. = 0.6, especially at the lower tempera-
tures. Nevertheless, for the higher temperatures the results do k
seem to collapse within statistical accuracy, while the large Zc:§+H(k_3)E Bi/ B, 1, (12)
error bars for the two lowest temperatures make this com- =4
parison somewhat difficult.
One useful application of the virial series is the predic-
tion of critical properties. To this end, we consider two dif- WhereH(l) is a Heaviside step function. For a series trun-
ferent truncated virial series. The first ofe¢SB3) is trun- ~ cated at third ordeZ, is 1/3. Fork=4, one must add to this

cated to third order, so that the equation of state is aterm linear iB,. SinceB, was shown to be positive at the
critical point for all the models considered, it is clear t@at

becomes even larger than 1/3. Actually, experimental critical
compressibility factors are usually smaller than 1/3, so that
addingB, to the virial series results in a poorer agreement
for the critical density.

=p+Bay(T)p?+Bs(T)p*+Bu(T)p*. 11)

p(p,T)
kgT

=p+Ba(T)p?+Bs(T)p?, (10
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TABLE II. Results for the fourth virial coefficient of quadrupolar Lennard-Jones diatomics for different bond leagthquadrupoleQ. AB, stands for the
error bars obtained as+iN,— 1 times the standard deviation of the mean.

Lo Q% eo® kgT/e B,/o® +AB,/0° Lo Q% eo® kgT/e B,/o®° +AB,/o®
0.0 1.0 1.3600 0.69 0.39 0.6 1.0 2.6791 10.34 0.35
0.0 1.0 1.4800 2.35 0.21 0.6 1.0 2.8660 8.16 0.25
0.0 1.0 1.6000 2.17 0.12 0.6 2.0 2.1895 8.42 1.75
0.0 1.0 1.7200 1.90 0.08 0.6 2.0 2.3826 12.82 0.96
0.0 1.0 1.8400 1.50 0.06 0.6 2.0 2.5758 13.73 0.57
0.0 2.0 1.9125 1.83 1.72 0.6 2.0 2.7690 10.03 0.41
0.0 2.0 2.0812 2.24 0.73 0.6 2.0 2.9622 8.02 0.29
0.0 2.0 2.2500 1.43 0.38 0.6 3.0 2.2969 6.43 2.45
0.0 2.0 2.4188 1.13 0.24 0.6 3.0 2.4996 10.83 1.31
0.0 2.0 2.5875 0.69 0.13 0.6 3.0 2.7023 13.46 0.73
0.2 0.0 3.6473 3.24 0.16 0.6 3.0 2.9049 .37 0.50
0.2 0.0 3.9691 4.54 0.11 0.6 3.0 3.1076 7.56 0.34
0.2 0.0 4.2909 4.29 0.07 0.6 4.0 2.4317 5.22 3.05
0.2 0.0 4.6128 3.70 0.05 0.6 4.0 2.6463 9.16 1.51
0.2 0.0 4.9346 3.14 0.04 0.6 4.0 2.8608 12.06 0.91
0.2 1.0 3.7053 3.23 0.18 0.6 4.0 3.0754 9.21 0.58
0.2 1.0 4.0322 4.47 0.12 0.6 4.0 3.2899 7.09 0.40
0.2 1.0 4.3592 4.29 0.08 0.8 0.0 1.7449 11.72 1.96
0.2 1.0 4.6861 3.64 0.05 0.8 0.0 1.8989 20.91 1.27
0.2 1.0 5.0130 3.09 0.04 0.8 0.0 2.0529 18.13 0.81
0.2 2.0 3.8628 2.27 0.33 0.8 0.0 2.2068 14.33 0.55
0.2 2.0 4.2036 4.39 0.20 0.8 0.0 2.3608 10.90 0.47
02 2.0 4.5445 4.31 0.12 0.8 1.0 1.7686 10.71 2.19
0.2 2.0 4.8853 3.39 0.09 0.8 1.0 1.9246 21.62 1.44
0.2 2.0 5.2261 2.85 0.07 0.8 1.0 2.0807 19.80 0.89
0.2 3.0 4.0952 1.63 051 0.8 1.0 2.2367 15.37 0.61
0.2 3.0 4.4565 4.19 0.28 0.8 1.0 2.3928 11.89 0.52
0.2 3.0 4.8178 4.24 0.18 08 50 18331 715 395
0.2 3.0 5.5405 2.63 0.09 0.8 2.0 2.1566 19.98 1.09
0.2 4.0 43177 1.08 0.79 0.8 2.0 2.3183 15.23 0.75
0.2 4.0 4.7640 3.94 0.41 0.8 2.0 2.4801 11.91 0.60
0.2 4.0 5.1503 4.18 0.26 0.8 3.0 1.9291 1.33 5.16
0.2 4.0 5.5365 2.17 0.17 0.8 3.0 2.0993 19.98 2.44
0.2 4.0 5.9228 2.39 0.11 0.8 3.0 2.2695 19.16 1.43
0.4 0.0 2.6856 5.57 0.37 0.8 3.0 2.4397 14.33 0.96
0.4 0.0 2.9225 8.54 0.25 0.8 3.0 2.6099 11.29 0.72
0.4 0.0 3.1595 .77 0.17 0.8 4.0 2.0470 ~7.19 7.95
0-3 0.0 3-3962 6-‘2‘2 0.11 0.8 4.0 2.2276 17.91 3.37
0. 0.0 3.633 5.23 0.09 0.8 4.0 2.4083 17.75 1.93
0.4 1.0 2.7197 5.84 0.40

0.8 4.0 2.5889 13.13 1.24
0.4 10 2.9596 8.29 0.25 0.8 4.0 2.7695 10.33 0.88
0.4 1.0 3.1996 7.91 0.18

1.0 0.0 1.5699 21.61 2.91
0.4 1.0 3.4396 6.52 0.12

1.0 0.0 1.7084 24.80 1.82
0.4 1.0 3.6795 5.29 0.09

1.0 0.0 1.8470 20.02 1.14
0.4 2.0 2.8139 5.78 0.53

1.0 0.0 1.9855 15.73 0.79
0.4 2.0 3.0622 7.80 0.31

1.0 0.0 2.1240 12.36 0.54
0.4 2.0 3.3105 7.83 0.22

1.0 1.0 1.5920 16.67 3.20
0.4 2.0 3.5587 6.44 0.14

1.0 1.0 1.7324 29.33 1.73
0.4 2.0 3.8070 5.16 0.11

1.0 1.0 1.8729 23.99 1.12
0.4 3.0 2.9563 3.92 1.02

1.0 1.0 2.0134 16.03 0.68
0.4 3.0 3.2171 7.34 0.60

1.0 1.0 2.1538 14.23 0.47
0.4 3.0 3.4780 7.79 0.36

1.0 2.0 1.6520 9.86 6.04
0.4 3.0 3.7388 5.92 0.26

1.0 2.0 1.7977 23.55 3.26
0.4 3.0 3.9997 4.95 0.17

1.0 2.0 1.9435 22.55 1.98
0.4 4.0 3.1349 2.21 1.47
o4 40 34115 6.6 084 1.0 2.0 2.0892 18.58 1.23
o4 40 36881 24 0.50 1.0 2.0 2.2350 13.53 0.87
04 40 39647 554 034 1.0 3.0 1.7405 175 11.38
0.4 4.0 4.2413 4.67 0.21 1.0 3.0 1.8941 21.40 5.60
0.6 0.0 2.0926 9.59 1.23 1.0 3.0 2.0477 20.48 3.19
0.6 0.0 2.2773 13.63 0.69 1.0 3.0 2.2013 16.98 178
0.6 0.0 2.4619 13.06 0.48 1.0 3.0 2.3549 12.97 1.20
hy 0.0 > GABE s b33 1.0 4.0 1.8484 —13.40 23.09
06 0.0 28312 g 0.24 1.0 4.0 2.0115 20.68 10.66
0.6 1.0 2.1183 9.62 1.34 1.0 4.0 2.1746 18.31 5.72
0.6 1.0 2.3052 13.80 0.75 1.0 4.0 2.3377 14.58 2.78
0.6 1.0 2.4922 13.64 0.49 1.0 4.0 2.5008 12.33 1.75
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FIG. 1. Fourth virial coefficients as a function of temperature féo
=0.2 (filled symbols andL/o=0.6 (empty symbols circles, squares, dia-
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4, respectively.
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FIG. 3. As in Fig. 2 but for the critical pressure.

on the van der Waals constants, which accounts for the at-
tractive interactiong® Therefore, to this low order approxi-
mation, the critical density should be less sensitive to

It is also interesting to note that the critical density changes in the quadrupole moment than the critical tempera-
seems to be far less sensitive to changes in the quadrupdiére and pressure.
moment than the critical temperature and pressure. Such a An improvement of the predictions from the virial series
behavior is probably the result of several factors, and a thorwith increasing anisotropy of the molecular core is observed.
ough explanation would be presumably rather involved.This trend could be expected, since the critical density of a
However, a simple explanation may be given in terms of a@nolecule decreases with increasing anisotropy. Since our
van der Waals mean field thed®.In such theories, one predictions are based on the virial series, one would then
writes down the free energy in terms of two contributions.expect that they become the more accurate the smaller the
The first one is related to the short range repulsive interaccritical density. However, the explanation may be somewhat
tions; the second one includes the effect of all attractivenore complicated. For example, in the case of the Lennard-
forces in a mean field approximation. For such a perturbatiodones fluid, the critical temperature and pressure predicted
expansion, one can show that the critical density only defrom a virial series truncated to fourth order egT./e
pends on molecular parameters related to the harsh repulsivel.300 andop./e=0.122¢ in good agreement with com-

forces(i.e., molecular elongation and volupré Hence, to a

puter simulation result® kgT./e=1.309 and op./e

first approximation the critical density may be considered to=0.118.(Note that the prediction for the critical temperature,
depend only on the shape, but not on the quadrupolar inteKsT¢/€=1.33 made by Panagiotopoul@shas been revised
actions. According to this simple theoretical treatment, orand lowered by several authors in later wdtk"'§ The

the other hand, both critical temperature and pressure depe@@reement is far less satisfactory for the critical density, how-

ever. Indeed, the virial series prediciSp.=0.268° while
the simulation result is3p.=0.312°"318For the Lennard-
Jones fluid and an embedded point quadrupol@éfeo®

0.35 T . T
@ 0.3 ¢ o
“ o O
>
0.25 1
Mbg
a
0.2 | 1
_______ X T A TTTTTTAT T T T TTA
LS5 ‘ : : 015} ]
0 1 2 3 4
o’iec’
0.1 1 ! 1
FIG. 2. Critical temperatures for different elongations as a function of the 0 1 22 P 3 4
quadrupole moment. Symbols, simulation results from Ref. 18: circles, Q' /o

L/o=0.2; squaresl/oc=0.4; diamondslL/o=0.6; triangles,L/0c=0.8;

lines, theoretical estimates, VSB8ashed ling VSB4 (full line).

FIG. 4. As in Fig. 2 but for the critical density.
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TABLE IIl. Critical properties for some selected molecular models with |\/. CONCLUSIONS
bond length_ and quadrupole mome@L The numbers on the left-hand side . .
of the columns indicate simulation results from Ref. (ecept second In summary, we have shown that a virial series truncated

column, results from Refs. 32 and)3While the numbers on the right-hand  to fourth order yields good results for the critical temperature
side indicate predictions as obtained from VSBA. and pressure. The convergence of the series to this order is
Lo QYed" KeTe/e o3p,le 3pe still, howe_v_er, not fu_IIy _satisfactory, because th_e agreement
for the critical density is worse than that obtained for the

0.0 1.0 1.600 1603 0.1486 0.1582 03395 02814 goiag truncated to third order. The convergence is possibly
0.0 2.0 225 218 025 0.21 0.38 0.28 | q . h lculati &h

0.2 0.0 4313 4274 03670 03499 02740 0.2328 Very slow, and our experience on the calcu atioBg ows

0.2 4.0 5143 5002 0.4460 0.4203 0.2908 0.2388 that the precise evaluation &5 and higher order coeffi-

0.4 00 3163 3113 02116 0.2018 0.2251 0.1849 cients may be extremely time consuming. Nevertheless, the
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from the virial series does seem unlikely, however.
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