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Abstract

We consider recent applications of Wertheim’s first order perturbation theory(TPT1) to the description of the critical properties
and the freezing transition of chain molecules. Firstly we consider an extension of TPT1 which allows one to describe the
equation of state of atomistic molecular models which incorporate fine chemical details such as overlap between the sites, fixed
bond angles and torsional potentials. The theory is applied to the description of the critical properties of all isomers ranging from
butane to octane and good qualitative agreement is found. We then show how TPT1 may be applied to the description of the
freezing transition of chain molecules. We apply the theory to chains of tangent hard spheres and Lennard–Jones chains and find
good agreement for the equation of state and free energies of the fluid and solid phases. Fluid–solid coexistence properties
predicted by the theory are in close agreement with simulation results. It is shown that for hard sphere and Lennard–Jones dimers
the stable solid structure is a disordered one, with the atoms forming a close packed arrangement, but with the bonds distributed
randomly within the solid.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Some time ago Wertheim presented a very successful
theory to study the thermodynamic properties of hard-
core fluids interacting via short-range attractive(asso-
ciation) forcesw1–4x, such as hydrogen bonding fluids.
When the association strength becomes infinitely strong
chains are formed from a fluid of associating monomers
w5x. Therefore Wertheim theory can be used to describe
the thermodynamic properties of chain models. In the
simplest implementation of the theory, which is com-
monly denoted as the first order thermodynamic pertur-
bation theory(TPT1), the only information required in
order to build an approximate equation of state for the
chain fluid is the equation of state of the monomer fluid,
together with its pair correlation function at contact. The
equation of state(EOS) for hard sphere chains arising
from TPT1 was proposed independently by Wertheim
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w6x and by Chapman et al.w7x. The theory can be
extended to systems where the monomer–monomer
interaction presents an attractive contribution as is the
case for the Lennard–Jones(LJ) modelw8,9x, the square
well potential w10x and the Yukawa potentialw11x. In
this way it has been possible to derive equations of state
(EOS) for freely jointed tangent chains(formed by
tangent monomers with no constraint in the bonding
angle or torsional state). The theory has been quite
successful in describing a number of properties of
models formed by tangent monomers(see the excellent
review of Muller and Gubbins for additional references
w12x).
Let us summarize briefly the main equations of

Wertheim’s TPT1. Let us assume that we have a certain
number,N , of spherical monomer particles within aref

certain volumeV at temperatureT, and that these
particles interact through a spherical pair potential
u (r). We denote this fluid as the reference fluid andref

the properties of this reference fluid will be labeled by
the superscript ref. Let us also assume that in another
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container of volumeV and temperatureT, we haveNs
N ym fully flexible chains ofm monomers each. Eachref

monomer of a certain chain interacts with all the other
monomers in the system(i.e. in the same molecule or
in other molecules with the only exception being the
monomerys to which it is bonded) with the pair potential
u (r). The chain system described so far will beref

denoted as the chain fluid. By fully flexible chains we
mean that there is neither bending nor torsional poten-
tials between the monomers of the chain. The only
intramolecular interaction is the presence of a pair
potential between monomers of the same chain separated
by more than one bond. In this case, the free energy of
the chain fluid as given by the TPT1 theory isw1–19x:

refA Aresidual3 refsln rL y1qm y my1 ln y Ÿ . (1)Ž . Ž . Ž .refNkT N kT

where rsNyV is the number density of chains,L is
the thermal de Broglie wavelength, is the residualrefAresidual

free energy of a fluid of free monomers interacting with
the reference potential, whiley (Ÿ) is the backgroundref

correlation functionw20x evaluated at the bonding dis-
tanceŸ. The equation of state which follows from Eq.
(1) is given by

refB E≠ ln y ŸŽ .
ref refC FZsmZ y my1 1qr , (2)Ž . ref

D G≠r

As can be seen, according to the above equations all
that is needed to obtain the free energy of the chain
fluid is the residual free energy of the reference mono-
mer system(at the sameT and monomer density) and
the contact value of the background correlation function
of the monomer reference fluid(both properties of the
reference fluid obtained at the sameT and monomer
number density as the chain fluid). We denote Eqs.(1)
and(2) as Wertheim’s TPT1 theory. Despite the success
of TPT1 in describing the equation of state of polymer
fluids and their mixtures, there are still some problems
that cannot or have not yet been addressed by this
theory. We shall address two of such problems in this
work.
Chain molecules found in nature, such as alkanes,

present high overlap of the interaction sites, an almost
constant bond angle and a torsional potential governing
the motion of the chain along the bond vectors. These
fine chemical details which very much affect the equa-
tion of state cannot be incorporated in a clear manner
into TPT1, since it was originally designed for tangent
monomer models. Another related problem is the effect
of branching. For an homopolymer TPT1 does not
distinguish between branched and non-branched iso-
mers. It is therefore questionable that the original TPT1
can be used to obtain differences between the thermo-

dynamic properties of branched and non-branched iso-
mers. Obviously, one could still use TPT1 for branched
and non-branched isomers by using adjustable potential
parameters for each isomer. This approach although
useful for practical applications(to reproduce experi-
mental results) is not so useful if one wishes to under-
stand and explain the origin of the difference in
properties of branched and non-branched alkanes. In the
first part of this paper, we will describe a methodology
that it is able to extend TPT1 in order to describe
molecules with arbitrarily complex chemical details.
This will permit a description of the effect of branching
on the critical properties of alkane isomers.
Another interesting problem is the freezing transition

of chain molecules. Quite recently we have noticedw21x
that the arguments used to arrive to Eqs.(1) and (2)
make no special mention as to the actual nature(i.e.
fluid or solid) of the phase considered. The question is
then: could we use Eqs.(1) and (2) to describe the
solid phase of fully flexible chains? This is an interesting
question which has also important practical conse-
quences. Actually, many flexible molecules exhibit a
stable solid phase at room temperature and pressure. For
instance, all linear alkanes with more than 20 carbon
atoms are solid at room temperature and pressure, and
the same is true for polyethylenew22x. In many industrial
processes one has to deal with the fluid–solid separation
of alkane mixtures. Therefore, a theoretical description
of the solid phase of flexible chain molecules would be
of great interest both from a fundamental and a practical
point of view and the interest in the area is just starting
w23x. In a series of studies we have compared the results
from Wertheim’s TPT1 as applied to the solid phase to
simulation results. In Ref.w21x it was shown that
Wertheim’s TPT1 describes quite well the EOS of hard
sphere chains fromms3 up to ms8. In Ref. w24x it
was shown that Wertheim’s TPT1 also describes quite
well the EOS of two-dimensional disk dimers. Also,
recently w25x it has been shown that Wertheim’s TPT1
predicts quite well the EOS and internal energy of the
LJ dimer in the solid phase. In these studies, however,
it was not possible to compare the free energies from
Wertheim’s theory to those of simulation. It is our goal
here to determine free energies for some of these models
in the solid phase, and to compare the predictions from
Wertheim’s TPT1 to the simulation results. For that
purpose we have chosen the dimer model with two
monomer sitesms2. For this model, the determination
of the free energy of the solid phase via computer
simulation is relatively straightforward. In fact, for the
hard dumbbell tangent dimer, previous calculations of
the free energy were available for the ‘ordered’ structures
w26x. This work sets out to determine the free energy of
the dimer model for the true equilibrium ‘disordered’
structure, and to prove that the disordered structure is
indeed more stable than the ordered structure for the
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dimer model. Also, we determine the free energies of
the LJ dimer in the solid phase, for the ordered and for
the disordered structures, and to establish again clearly
that the disordered structure is indeed more stable than
the ordered one.
This paper illustrates how Wertheim’s TPT1 can be

used for problems different from those for which it was
originally designed. The scheme of the paper is as
follows. In Section 2 we shall show how Wertheim’s
TPT1 when modified properly can provide a qualitative
view of the variation of the critical properties of alkanes
(linear and branched). In Section 3, results of Werth-
eim’s TPT1 for several dimer models in the solid phase
will be presented, with special emphasis in the free
energy as determined from theory and from simulation.
Finally, in Section 4 the main conclusions of this work
will be presented.

2. Liquid–vapor phase coexistence of short alkanes

2.1. Model alkane

We describe the alkanes by means of a united atom
model. The groups CH , CH , CH and C will be3 2

represented by a Lennard–Jones(LJ) interaction site
located on the position of the carbon atom. The number
of carbon atoms of the alkane will be denoted byn.
These interaction sites are responsible for all of the
intermolecular interactions and for those intramolecular
interactions, which take place between atoms more than
three bonds apart. The potential governing interactions
between sitesi and j is taken to be of the Lennard–
Jones type:

w z12 6B E B Es sij ijC F C Fu r s4´ y (3)x |Ž .ij ij
D G D Gr ry ~ij ij

A different value for´ ands will be assigned to the
CH , CH , CH and C groups. Crossed interactions3 2

between different groups are considered to obey the
Lorentz–Berthelot rulesw27x. The actual values we have
considered for´ and s are set II of Ref.w28x. The
carbon carbon bond distance is taken asls1.53 A,˚
while the C–C–C bond angleu is set to the tetrahedral
value, i.e.us109.5. The flexible nature of the molecule
is introduced at the level of the torsional degrees of
freedom. More specifically, we consider that the overall
potential about a given bond vector is the sum ofn-
butane torsional potentials of the Ryckaert–Bellemans
form w29x for each possible dihedral angle.

2.2. Perturbation theory

The Helmholtz free energyA is given by the sum of
ideal, intra-molecular and intermolecular contributions.

Owing to the flexible nature of the molecules, these two
last contributions depend on molecular parameters which
are themselves a function of the conformational popu-
lation, X, of the system. The free energy then becomes
a functional ofX. In order to simplify the problem, we
consider the rotational isomer approximation(RIS) w30x.
In this way, the continuum of torsional angles is replaced
by a discrete set of three torsional states,trans, gaucheq
and gauchey, so that the conformational space is
discretized. The Helmholtz free energy may be then
expressed as:

AsA qA X qA X (4)Ž . Ž .ideal intra inter

whereXs(x ,x ,«,x ) is now a vector whose compo-1 2 q

nents are the molar fractions of the conformers of the
system(the number of possible conformers may be large
but remains finite within the RIS approximation).
The ideal term is simply given by:

3A yNk Tsln rL y1 (5)Ž .ideal B

The intramolecular term is given within the RIS
approximation byw30–32x:

isq isq

A yNsk T x ln x q x n EŽ .intra B i i i g,i 18 8
is1 is1

isq

q x U LJ (6)Ž .i intra,i8
is1

wheren is the number of gauche bonds of conformerg,i

i, U (LJ) is the intramolecular LJ energy of conformerintra

i, q is the number of possible conformers of the
molecule, andE is the torsional energy of a torsional1

bond in the gauche state(the energy of the trans state
is taken as zero).
As to the intermolecular contribution, we will consider

a first order perturbation theory. The total configurational
energy of the system is divided into purely intramolec-
ular and purely intermolecular parts. The latter part is
made up of the sum of all interactions between sites of
different molecules. The intermolecular site–site poten-
tial is then decomposed into a repulsive term,u , and0

an attractive term,u , following the Weeks–Chandler–1

Andersen decomposition. The repulsive reference term
is obtained from the full LJ potential as follows:

S w z12 6B E B Es skl klT 1y6C F C F4´ y q´ rF2 sx |kl kl klUkl D G D Gr ry ~u r sŽ .0 T 1y60 r)2 sV kl

(7)

while the attractive perturbation term is obtained asu s1
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uyu . The complete reference system is made up ofall0

the intramolecular interactions, plus the repulsive inter-
molecular interactions, while the perturbation contains
all of the intermolecular attractive interactions. In this
way, the conformational population of the reference
system is the same as that of the full system in the ideal
gas limit.
When the interaction potential is so divided, the

configurational contribution to the Helmholtz free ener-
gy may be split into two terms:

A X sA X qA X (8)Ž . Ž . Ž .inter 0 1

where A (X) is the intermolecular free energy of the0

reference system when the population of conformers is
given by the actual population of the full system,X,
while A (X) is the intermolecular free energy due to the1

perturbation potential.
In order to obtain an explicit expression forA , we0

will require an approximation which consists in assign-
ing an effective hard body to the reference system. In
this work we will assume that a WCA site of typei
may be mapped into a hard sphere site with an effective
diameterw28,33x. Once an effective hard body has been
assigned to the reference system, we still need an
equation of state to describe a rather complex molecular
fluid made of overlapping hard spheres with fixed bond
angles and torsional potentials. Although this is in
principle an extremely complicated problem, we have
found that an empirical modification of Wertheim’s
perturbation theory works very well. Our approach
consists in modifying the original expression for chains
of tangent hard spheresw6–8x so that it predicts the
correct second virial coefficient of the molecule under
consideration. Similar modifications were proposed
some time agow34,35x. This approach, which we call
Modified Wertheim Theory(MWT), has been shown to
yield excellent results for hard linear and branched
alkanesw31,32,36,37x. The resulting expression for the
free energy readsw31x:

3B E2 1yyŽ .A0 C F¯s 2ay1 lnŽ .
D GNk T 2yyŽ .B

21qyy0.5y
¯y 2ay2 (9)Ž .

1yy 1y0.5yŽ .Ž .

wherea is the average non-sphericity parameter of the¯
molecule and the packing fraction,y, is given as the
product of the number density and the average molecular
volume,…. Comparison of this equation with the orig-¯

inal expression shows that our approach amounts to
finding an effective number of tangent hard spheres,
m , which is related toa by m s2ay1. More detailsef ef¯ ¯
of this approach may be found elsewherew31,32,36,37x.

Eq. (9) can be summarized by saying that when describ-
ing the ‘realistic’ hard alkane model, we used Werth-
eim’s TPT1 for an idelized model ofm tangent hardef

spheres. The parameterm is determined by imposingef

that the second virial coefficient of the ‘realistic’ hard
alkane is equal to that of the flexible tangent hard sphere
model (as given by the original Wertheim’s TPT1 for
tangent hard spheres).
The perturbative contribution to the Helmholtz free

energy may be determined by means of the following
equation:

n n1 kl 2A yNk Ts br u r g r;r 4pr dr (10)Ž . Ž .1 B 1 0,kl|882 ks1ls1

whereg is the site–site correlation function between0,kl

sites k,l of the reference system. Eqs.(4)–(6), (8)–
(10) constitute a general expression for the free energy
of flexible molecules where the conformational popula-
tion is obtained variationally from the total free energy
of the systemw31,32,38x. The approach is, however,
rather involved and will not be considered here. In this
work we will henceforth assume that the conformational
population is given by the ideal gas limit and does not
change with density. Although this approximation does
not hold for long chains, it is quite accurate for the
short alkanes that will be considered herew31,32,39–
41x. In this way, the intramolecular contribution is a
constant for a given temperature and may be altogether
ignored for the purpose of phase equilibria calculations.
Even within this approximation, the calculation of

g for arbitrary densities is a very complicated and0,kl

time consuming problem. We will therefore consider a
van der Waals approximation, whereby the site–site
correlation functions are assumed to be density inde-
pendent and equal to the site–site correlation functions
at zero density. In this way,A becomes a simple linear1

function of the density which takes the following form:

A yNk Tsyba r (11)1 B vdw

In the above equation,a is a van der Waalsvdw

constant, which is determined by integration of the zero
density site–site correlation functions of the reference
system, :g90,kl

n n `
kl gi 2a sy 2p u r g9 r,X r dr (12)Ž . Ž .vdw 1 0,kl|88

dklk l

As to the zero density site–site correlation functions,
they are determined numerically by means of an efficient
algorithm proposed recently, which is based on the idea
that may be considered to be a Mayer functiong90,kl
with molecular reference frames placed on sitesk,l w42x.
The argumentX emphasizes that is obtained asgi g90,kl
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Fig. 1. Compressibility factorZ for hardn-alkane chains as a function of packing fraction. Symbols, simulation results. Lines, theoretical predictions
from Wertheim TPT1 using an efective number of tangent spheresm . All interaction sites associated to each carbon atom have a hard sphereef

of diameterds3.7109 A.˚

an average of pairs of conformers sampled from an ideal
gas population.
To summarize, the final expression for the Helmholtz

free energy that we will consider is then given by the
sum of Eqs.(5), (9), (11) and (12). More explicitly, it
takes the form:

3B E2 1yyŽ .A0 3 C F¯sln rL y1q 2ay1 lnŽ . Ž .
D GNk T 2yyŽ .B

21qyy0.5y
¯y 2ay2 yba r (13)Ž . vdw1yy 1y0.5yŽ .Ž .

where ys…r, while a, … and a are molecularvdw

parameters determined as conformational averages from
the ideal gas population. Since we regard the system as
a multicomponent mixture of rotational isomers,a and¯
… are given by:¯

q

ās x a (14)i i8
is1

q

…̄s x … (15)i i8
is1

where the sum runs over all possible conformers, while
the molar fractions of the conformers are assumed to be
those found in the limit of zero density. In principle, the
values ofa needed in the previous equation may bei

obtained from a knowledge of the second virial coeffi-
cients. However, this requires rather time consuming
calculations. For that reason, instead of evaluating the
second virial coefficient we shall use a method recently
proposed(based on convex body geometry) that yields
accurate and quick predictions of the second virial
coefficient of chains with up to 100 monomer units
w36,42x.

2.3. Results

2.3.1. Test of the reference equation of state
Before we consider the predictions of the mean field

equation of state that we have proposed, it is convenient
to test the performance of the reference equation of state
employed to describe the repulsive alkane models. In
Fig. 1 we show the compressibility factor of hard linear
model alkanes, ranging fromn-hexane ton-octane, as a
function of packing fraction. The lines are results
obtained from MWT, while the symbols are Monte
Carlo simulation results. The figure shows rather good
agreement between simulation and theory, even for
packing fractions as high as 0.55, close to the expected
freezing transitionw43x. Although MWT was originally
devised for linear alkanesw31,32,36x, we have recently
shown that it is also very accurate for branched alkanes
w37,44x. In Fig. 2 we show the equation of state for
three isomers of octane, namely,n-octane, 2,5-dimethyl-
hexane and 2,2,3,3-tetramethylbutane. It is seen that the
theory yields good results for all three substances, and
that choosingm as discussed previously allows one toef
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Table 1
Effective chain lengthm and molecular volume… (in units of d ,3ef

the diameter of the hard sphere associated to each monomer) for some
hard alkane models. The value of the hard sphere diameter associated
to each monomer isds3.7109 Å

Alkane mef …

n-hexane 1.76838 2.027161
n-heptane 1.94843 2.326571
n-octane 2.15632 2.625892
2,5-dimethylhexane 1.89752 2.610603
2,2,3,3-tetramethylbutane 1.47211 2.569577

Fig. 2. Compressibility factorZ for three different hard octane isomers as a function of packing fraction. Symbols, simulation results. Lines,
theoretical predictions from Wertheim TPT1 using an efective number of tangent spheresm . All interaction sites associated to each carbon atomef

had a hard sphere of diameterds3.7109 A.˚

clearly describe the effect of branching on the equation
of state of different alkane isomers. Such an effect is
seen to be quite pronounced. Indeed, by comparing Fig.
1 with Fig. 2 it is seen that the differences in the
compressibility factor of octane isomers may be consid-
erably larger than those observed by changing the actual
number of carbon atoms in the chain. In order to see
this more clearly, Table 1 presents the results of the
effective number of spheres for the different substances
considered in this work. As expected, the effective chain
length of n-alkanes increases as the number of carbon
atoms increases. For branched alkanes, however, the
effective chain length no longer shows such a simple
dependence. Usually, the more heavily branched the
alkane, the smaller its effective chain length will be.
Although this qualitative statement is rather intuitive,
quantification is another matter. Table 1 presents a
quantitative statement of this fact. It is seen that the
effect of branching is such that 2,5-dimethylhexane is
effectively a shorter chain thann-heptane, while 2,2,3,3-
tetramethylbutane is effectively shorter thann-hexane.
This will obviously have a very significant effect on the
critical properties of branched alkanes.

2.3.2. Critical properties of branched alkanes
Now that the equation of state for the reference fluid

has been tested we may consider the predictions from
the mean field theory more confidently. We note, how-
ever, that one cannot expect a quantitative agreement

from the theory, due to the van der Waals approximation
employed for the perturbative contribution, which has
the effect of considerably underestimating the intensity
of the site–site correlations. As an example, for the
critical temperature this would have the effect of consid-
erably underestimating the experimental result. For this
reason, instead of performing a direct comparison
between theory and experiment, we rescale the theoret-
ical results for a given alkane isomer by a factor such
that the theory yields exact results for the corresponding
n-alkane of that family. For example, in case of the
critical temperatures of a hexane isomer, we plot a
rescaled critical temperature, , obtained as follows:T9i

expTnyhex theT9 s T (16)i itheTnyhex

where is the experimental critical temperature ofexpTnyhex
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Fig. 3. Critical temperatures for butane, pentane, hexane, heptane and octane isomers. For each group of isomers, the experimental critical
temperatures are arranged in decreasing order and compared with the corresponding(rescaled) theoretical results. The integer index associated to
each alkane is described in detail in Ref.w28x. For each isomer both the experimental and the theoretical(from the perturbation theory described
in the main text) critical temperatures are presented.

n-hexane, while is the theoretical prediction fortheTi
isomeri.
In Fig. 3 the experimental critical temperaturesw22x

for a number of alkanes with up to eight carbon atoms
are compared to those obtained from the rescaled theo-
retical predictions. For each group of isomers, the
experimental critical temperature of a given alkane in
that group is plotted in order of decreasing temperature,
and the corresponding prediction from the theory is
plotted for the same value of the abscissa. The figure
shows rather good agreement with the experimental
results. We note that whereas the apparent quantitative
agreement results from rescaling, the qualitative agree-
ment, i.e. ordering of the critical temperatures, is implicit
in the theory. Particularly, it is seen that the theory is
able to order correctly from high to low the critical
temperatures of all isomers of butane, pentane and
hexane, despite the fact that the differences between
them amount to a few Kelvin. For heptane and octane
isomers the agreement is less satisfactory but still rather
reasonable.
Similar plots for the critical molar volume and pres-

sure are shown in Figs. 4 and 5, respectively(i.e. the
experimental properties are represented in decreasing
order and the theoretical predictions are rescaled as in
Eq. (16)). The agreement is seen once more to be rather
good, and the decreasing trend in the critical volumes
and pressures is found to be well captured, though,
admittedly, the theory is not able to predict the correct
ordering for all the substances. Such a possibility is

beyond our ability as a consequence of(1) our ignorance
on the exact force field of each molecule,(2) the
description of the structure by a simple mean field term
and (3) the truncation of the perturbation expansion.
This work shows, however, that a good quantitative
theory may be expected by improving the description
of the perturbation contribution. The advantage of the
simple van der Waals approach is that it allows for a
rationalization of the dependence of the critical para-
meters on the molecular properties. Indeed, by differ-
entiation of the free energy, one finds that the pressure
of the proposed equation of state takes the form:

2psp r;…,a ya r (17)Ž .MWT vdw

where p is the pressure as predicted by the MWMW

equation of state. If we then apply the conditions for
the critical point, we find that the critical properties may
be obtained in a closed form in terms of three molecular
parameters, namely,…, the molecular volume,a, the
non-sphericity, anda , the van der Waals constant:vdw

UV s…V a (18)Ž .c c

avdw UT s T a (19)Ž .c ck …B

avdw Up s p a (20)Ž .c c2…



44 C. Vega et al. / Journal of Molecular Liquids 113 (2004) 37–51

Fig. 4. As in Fig. 3 for the critical molar volumes.

Fig. 5. As in Fig. 3 for the critical pressures.

where , and are all dimensionless, universalU U UV T pc c c

functions ofa. The explicit form of these functions is
not important. What matters is that is a monotoni-UVc
cally increasing function ofa, while and areU UT pc c

both monotonically decreasing functions ofa w44x. This
knowledge is sufficient to use Eqs.(18)–(20) to make
simple qualitative predictions on the variation of the
critical properties in terms of the molecular parameters.
As an example, Eq.(19) shows that the smallera, the
larger T . This explains why highly branched alkanesc

such as 2,3,3-trimethyloctane may have a larger critical
temperature thann-octane, when it is expected that the
former should have a smaller van der Waals constant.
Table 2 presents a summary of the conclusions drawn
form these equations.

3. The freezing transition of chain molecules

In this section we will consider the freezing of chain
molecules made up of either tangent hard spheres or
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Table 2
Dependence of the critical properties with the molecular parameters
as predicted from the van der Waals theory of this work

Critical Molecular parameter

property a … avdw

Vc p p —
Tc o o
pc o o
Zc o — —

‘p’ and ‘o’ indicate increase or decrease of the given property
with respect to an increase in the corresponding molecular parameter,
while ‘—’ indicates no dependence on that property.

Lennard–Jones chains. For the former, the reference
potential is a simple hard sphere potential and the bond
lengthŸsd is set to the hard sphere diameter. For the
latter, the interaction sites are LJ beads, and the bond
length is set toŸss. Note that for both systems,
y(Ÿ)sg(Ÿ), so that the background correlation function
is substituted by the radial correlation function in Eqs.
(1) and(2).
Let us analyze in more detail the information required

to implement Wertheim’s theory for the solid phase. Let
us start with hard spheres chains. For hard sphere chains,
we need to know the EOS, residual free energy and
contact value of the pair correlation function of the hard
sphere monomer in the solid phase. This information
had long been available. In fact, Hallw45x proposed an
EOS for the hard sphere monomer in the solid phase
that reproduces quite well the simulation results of hard
spheresw46x. The contact value ofg(s) is obtained
easily from the EOS of the hard sphere solid by using
the virial theorem. The free energy of hard spheres in
the solid phase can be obtained by thermodynamic
integration of the EOS if the free energy is known at a
reference point. The free energy of the hard sphere solid
at a certain reference density was reported long ago by
Hoover and Reew47x, and more recently by Polson et
al. w48x. In summary all the information required to
implement Wertheim’s theory for the solid phase of hard
chains is available. What about LJ chains? For LJ chains,
van der Hoefw49x has recently proposed an analytical
expression, which reproduces almost exactly the simu-
lation values of the free energies of the LJ solid. By
differentiating the free energy expression with respect
to density the EOS of the monomer LJ in the solid
phase is obtained. The contact value ofg(s) for the LJ
monomer was not available in the literature. However,
we recently performed a number of computer simula-
tions to determineg(s) for the LJ monomer system in
the solid phase and proposed an expression to fit all the
simulation resultsw25x. Therefore, Wertheim’s theory
can be applied to LJ chains. The third example is that
of two-dimensional hard chains. For two-dimensional
hard disks a good EOS for the monomer solid phase is

available w50x. By using the virial theorem in two
dimensions the contact value ofg(s) can be obtained.
Free energies of the two-dimensional hard disk have
also been reported. Again all the ingredients needed to
implement Wertheim’s theory for two-dimensional hard
disk chains are available. Therefore the information
required to implement Wertheim’s TPT1 to the solid
phase of hard chains, LJ chains in three dimensions and
hard disk chains in two dimension is available. The next
natural question, is the following: what is the stable
solid structure of hard sphere chains, LJ chains and hard
disk chains?
Let us briefly discuss the solid structure of fully

flexible tangent chains. For this model there is no
energetic penalty when the atoms of the chains adopt a
close-packed structure(for instance the face centered
cubic fcc close-packed structure) with an ordered
arrangement of atoms but with no long-range orienta-
tional order in the bond vectors of the chains. Wojcie-
chowski et al. w51,52x were the first to realize this
important feature in a continuum hard two-dimensional
model. In fact Wojciechowski et al.w51,52x showed that
the stable solid structure of tangent hard-disc dimers in
two dimensions is formed by a close-packed arrange-
ment of atoms with a disordered arrangement of bonds.
The same idea holds for hard chains in three dimensions
w53x, and one may expect that the same would occur
for a three-dimensional LJ chain. The bond disorder
means that there is an additional contribution to the
entropy of the system arising from the degeneracy of
the structure.
As we have all of the information required, we shall

now present computer simulation results for the free
energy of hard sphere tangent dimers and for LJ tangent
dimers, and proceed to compare directly the free energies
obtained from simulation to those obtained from Werth-
eim’s TPT1 in the solid phase. This is certainly a severe
test of the theory.

3.1. The hard dimer solid

In order to evaluate the fluid solid equilibrium of the
hard dumbbell model, it is necessary to know the free
energy of the disordered solid structure. For that purpose
we have performed free energy calculations using the
Einstein Crystal method proposed by Frenkel and Ladd
w54x. Typically we usedNs432 molecules, with ten
values of the spring constants ranging from 0 tos l y2

t

(kT)s4=10 for the translational spring and from 0 to3

l y(kT)s4=10 for the orientational spring. The meth-3
r

odology of the Einstein crystal calculation used here is
similar to that described in Ref.w26x and we refer the
reader to this paper for further details. The reduced
number density chosen for the free energy calculations
wasr*s(NyV)s s0.5490. This is not too far from the3
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Table 4
Simulation results for the equation of state of hard dumbbells(two
tangent hard spheres) in the disordered solid phase as obtained from
NpT simulations

ps ykT3 r*

60 0.6675
55 0.6648
50 0.6620
45 0.6556
40 0.6500
35 0.6420
30 0.6340
25 0.6205
20 0.6007
18 0.5917
16 0.5784
14 0.5645
12 0.5449
10 0.5166

8 0.4495
6 0.4189
4 0.3764
3 0.3463
2 0.3035
1.8 0.2930

The results correspond to the average of four independent config-
urations. For pressures below those of the empty line the solid is
mechanically unstable and melts into an isotropic fluid.

Table 3
Helmholtz free energies(in NkT units) for the hard dumbbell model consisting of two tangent hard spheres

Method Structure A y(NkT)Einsteincrystal Degeneracy Ay(NkT)

Simulation Disordered solid 11.36(2) y1.5194 9.84(2)
Simulation Ordered CP1 solid 10.80 0 10.80(3)
Theory Disordered solid * * 9.76

The results correspond to the dimer atr*s0.5490 in the disordered solid, and in the ordered solid labeled as CP1 in Ref.w26x. The free
energies were obtained from simulation or from Wertheim’s TPT1 theory of the solid phase.

expected density of the solid at melting. We performed
free energy calculations for four different configurations
of the disordered solid. In this way we were able to
determine the free energy for each ‘individual’ config-
uration. Free energy differences between individual con-
figurations of the disordered solid were found to be less
than 0.5%. The average free energy of those individual
configurations was found to beAy(NkT)s11.36(0.02).
For comparison, the free energy of the dumbbell in the
ordered solid structure, which will be denoted as CP1,
has been calculated in Ref.w26x for the reduced density
r*s0.5490 and found to beAy(NkT)s10.80w26x. This
last result is obtained by thermodynamic integration
from the free energy atr*s0.590, which is known
from previous work.1,26

As it can be seen, forr*s0.5490 the free energy of
the ordered solid(Ay(NkT)s10.80) is somewhat small-
er than the average free energy of an individual disor-
dered solid configuration (Ay(NkT)s11.36(0.02).
However, there is an additional term to the free energy
of the disordered solid that has not yet been included
and which is not present in the ordered solid. In reality,
the disordered solid has an additional free energy con-
tribution arising from the fact that one must account for
all the possible disordered arrangements of molecules
compatible with the solid phase(i.e. number of ways in
which the bonds may be arranged within the fcc lattice).
This additional term to the free energy is usually denoted
as the degeneracy entropy. The degeneracy entropy of a
dimer on a fcc lattice has been estimated by several
authors, and the best estimate(Ay(NkT)sy1.5194) is
that of Naglew55x (this number can also be obtained
from the combinatorial entropy of mixing of the Flory–
Huggins theory with a coordination number of 12).
Therefore for the disordered solid the total free energy
at r*s0.5490 is given byAy(NkT)s11.36y1.52s
9.84(0.02), thus showing that the stable solid phase is
in fact the disordered solid. Notice that this result holds
also in two dimensions, as first proved by Wojciechows-
ki et al. w52x. The summary of the free energy calcula-
tions of the hard dimer forr*s0.5490 can be found in

Note that in this work we have used the hard sphere diameter as1

unit of length, whereas we used the diameter of a hard sphere with
equal volume as the dimer in Ref.w26x. Since the free energies
include an ideal gas term of the form ln(r*), this means that there
is a trivial ln2 difference between the free energies of this work and
those of Ref.w26x. Of course this does not affect coexistence densities
but just the absolute values of the free energies.

Table 3, which also includes predictions from Werth-
eim’s theory. It is seen that forr*s0.5490, TPT1
predicts a free energy ofAy(NkT)s9.76, which is
comparable with the simulation result,Ay(NkT)s
9.84(0.02). We point out that in order to obtain the free
energy of the disordered solid from simulations one
must first use the Einstein crystal methodology to obtain
the free energy of individual configurations and then
add the degeneracy contribution(i.e the number of
possible disordered structures). On the contrary, in
Wertheim’s theory the degeneracy contribution is includ-
ed implicitly. A similar procedure to that described here
for three-dimensional hard dumbbells has been used by
Wojciechowski et al. for the two-dimensional dimer
problemw52x.
In Table 4 the EOS for the disordered dumbbell solid

as obtained from the Monte Carlo simulations of this
work is presented. Simulation results were obtained
using NpT ensemble. We usedNs432 molecules with
4=10 cycles for equilibration followed by another4

4=10 cycles for average production. A cycle involved4
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Fig. 6. Equation of state for hard dimers. Filled squares are simulation results for the fluid phase. Circles are results for the orderd(empty) and
disordered(filled) solid phases. The dash-dotted line and the thick-dashed line are tie lines from simulation for the coexistence of fluid with
ordered and disordered solid phases, respectively. The full lines are results from TPT1, with the tie line corresponding to the fluid-disordered
solid coexistence. The pressure is given inkTys units.3

a trial move per particle(translation or rotation) and a
trial attempt of changing the volume of the system. The
acceptance ratio was kept close to 30% for translational,
rotational and volume changes. Results presented in
Table 4 correspond to the average of the EOS obtained
for four different configurations of the disordered solid.
All pressures of this work are given inkTys units. The3

simulations began at the highest pressure, which was
then slowly decreased. For pressures below 10 the
disordered solid became mechanically unstable and melt-
ed into an isotropic fluid. The line in Table 4 separates
the simulation results of the solid from those of the
fluid phase.
In Fig. 6 we present simulation results for the EOS

of the fluid, ordered solid and disordered solid, together
with predictions from Wertheim’s theory for the fluid
and solid phases. The first thing to be noted from Fig.
6 is that the EOS of the ordered CP1 and disordered
solid are quite similar, as already suggested some time
ago w26x. Also, Sear and Jackson assumed that the EOS
of the ordered solid was similar to that of the disordered
one, when they first proposed a TPT1 like treatment for
the dimer in the solid phasew56x. It is also clear from
Fig. 6 that Wertheim’s theory is able to describe quite
well the fluid and solid branches of the dumbbell model.
Not only that but also the agreement between theory
and simulations for the location of the fluid solid
equilibrium is quite good. In fact, according to the
simulation results of this work the fluid–solid coexis-
tence of the dumbbell model occurs for ,Ur s0.4950f

, ps12.62 andmy(kT)s32.82. However,Ur s0.5525s

Wertheim’s theory predicts , ,U Ur s0.4915 r s0.5470f s

ps12.24 andmy(kT)s32.06 in quite good agreement.
The coexistence pressure as determined from our free
energy calculationsps12.62 is consistent with the fact
that the disordered solid becomes mechanically unstable
for pressures belowps10. In Fig. 6 the transition fluid-
CP1 ordered solid is also presented. As can be seen the
fluid-CP1 ordered solid occurs at a higher pressure(i.e.
ps17.28) than the fluid-disordered solid transition(ps
12.62). Therefore the fluid-ordered solid CP1 transition
never occurs.
In Fig. 7, coexistence densities for the fluid–solid

equilibrium of flexible chains are plotted as a function
of m (the number of monomers of the chain). Simula-
tions results forms1 are taken from Ree and Hoover
w47x, those forms2 from this work, and those forms
3 up toms8 from Malanoski and Monsonw53x. Lines
correspond to theoretical predictions as obtained from
Wertheims’s theory for the fluid and solid phases. As
can be seen, the agreement between theory and simula-
tion is quite good. Similar good agreement is found in
Fig. 8 for the coexistence pressure of hard sphere chains.
To summarise, we have shown that the stable solid

for the dumbbell dimer is a disordered one, and that
Wertheim’s theory is able to yield a good description of
the EOS and free energies of the disordered solid.

3.2. The two center Lennard–Jones dimer

For the two center Lennard–Jones model(2CLJ) we
have performed free energy calculations for two different
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Fig. 7. Fluid and solid coexistence packing fractions as a function of chain lengthm (the solid phase refers to the disordered phase) for fully
flexible tangent hard sphere chains. The filled circles are simulation results from Malanoski and Monsonw53x, the filled triangles are simulation
results from this work. Full lines are theoretical predictions from TPT1.

Fig. 8. Coexistence pressures for the fluid-disordered solid transition of fully flexible tangent hard sphere chains as a function of chain length.
Symbols as in Fig. 7. The pressure is given inkTys units.3

reduced temperaturesT*skTy´, namely T*s1 and
T*s2. In both cases we used fifteen different values
for the translational and rotational spring constants
ranging from 0 to 2=10 . The densities considered4

wherer*s0.5490 forT*s1 andr*s0.5800 forT*s
2. The site–site pair potential was truncated atrs2.5s
and long range corrections were added to the internal

energy(when the volume was changed these long range
corrections were included within the Markov chain).
Details of the calculations are similar to those described
by Vega and Monsonw57x. For the ordered CP1 structure
we employed 256 molecules, while for the disordered
structure we used 432 molecules. As for the hard sphere
dimers, calculations were performed for four different
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Table 5
Helmholtz free energies as obtained from simulation for the 2CLJ atr*s0.5490 andT*s1

Method Structure A y(NkT)Einsteincrystal Degeneracy Ay(NkT)

Simulation Disordered solid y4.17 (3) y1.5194 y5.69 (3)
Simulation Ordered CP1 solid y4.76 (3) 0 y4.76 (3)
Theory Disordered solid * * y5.69

Results for the disordered solid and the ordered solid(denoted as CP1 in Ref.w26x). Results from Wertheim TPT1 theory are also presented.

Fig. 9. Helmholtz free energy as a function of density for the disordered solid phase of the LJ dimer atT*s1. Symbols, simulation results from
this work; lines, theoretical predictions from TPT1. Due to a misprint the coefficientis4, js1 of Table 1 of Referencew25x should read 69.219
(and not 68.219)

configurations of the disordered solid. Results presented
here correspond to the average of those disordered
configurations. The final value of the free energy of the
2CLJ disordered solid was obtained by adding the
degeneracy contributiony1.5194 to the free energy
calculations obtained from the Einstein crystal method.
Results from the free energy calculations forT*s1

are presented in Table 5. As can be seen the Einstein
crystal energy of the ordered structure is smaller than
that of the disordered solid. However, once the degen-
eracy entropy is added, the free energy of the disordered
solid becomes smaller. Therefore for LJ dimers the
disordered solid structure is also the most stable one. In
Table 5 the prediction of Wertheim’s theory for the free
energy of the solid is also presented. As can be seen the
agreement between theory and simulation is impressive.
In a previous paper we have shown that Wertheim’s
theory gives quite good results for the EOS and internal
energy of the solid disordered phasew25x. In this paper
we show for the first time that the agreement for the
free energy is also excellent. In Fig. 9 the free energy
of the LJ dimer disordered solid is shown as obtained

from simulation and from Wertheim’s theory forT*s1.
The free energy from simulation was obtained from the
free energy atr*s0.5490 and using thermodynamic
integration with the EOS as obtained from NpT simu-
lations. As can be seen, the agreement between theory
and simulation is quite good. This proves that Werth-
eim’s theory can be used with confidence to predict all
properties, internal energy, EOS and free energy of the
LJ disordered solid.
In Table 6 the free energy of the disordered solid at

T*s2 and r*s0.58 as obtained from this work is
shown. Results from Wertheim theory are also shown.
As can be seen again, Wertheim’s theory yields quite
good predictions of the free energy of the disordered
solid, although the agreement is slightly worse than for
T*s1.

4. Conclusions

In this paper we have shown how Wertheim’s TPT1
theory can be used successfully to describe systems for
which the theory was not originally designed. The two
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Table 6
Helmholtz free energies as obtained from simulation and from Wertheim TPT1 theory of the 2CLJ model atr*s0.580 andT*s2 in the disordered
solid structure

Method Structure A y(NkT)Einsteincrystal Degeneracy Ay(NkT)

Simulation Disordered solid 3.13(2) y1.5194 1.61(2)
Theory Disordered solid * * 1.65

presented examples are, the description of realistic mod-
els of alkanes, linear and branched, and the description
of flexible molecules in the solid phase. Main conclu-
sions of this work are the following:

● Wertheim’s TPT1 can be used to describe the EOS
of realistic hard repulsive models of alkanes, by
using the actual volume of the model, and an effec-
tive number of tangent spheresm . This effectiveef

number can be obtained from the second virial
coefficient of the hard model.

● Hard models of branched alkanes present a lower
value of the compressibility(for a certain volume
fraction) than the corresponding linear isomers. This
behavior may be rationalized in terms of the non-
sphericity factor,a, since the compressibility increas-
es linearly witha at constant packing fraction and
a is found to decrease with branching.

● The mean field theory proposed in this work is able
to capture the main trends in the critical properties
of linear and branched alkanes.

● Wertheim’s TPT1 theory can be used successfully to
describe the solid phase of flexible models. This is
true for tangent hard sphere models, and for tangent
LJ models. In this work it has been shown that
Wertheim’s TPT1 yields free energies of the solid
phase in excellent agreement with those obtained
from simulation.

● We have proved by performing free energy calcula-
tions, that for the hard sphere and LJ dimer, the
stable solid structure is one with an fcc arrangement
of atoms, but with a disordered configuration of
bonds.
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