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Abstract

We consider recent applications of Wertheim's first order perturbation th@d?¥ 1) to the description of the critical properties
and the freezing transition of chain molecules. Firstly we consider an extension of TPT1 which allows one to describe the
equation of state of atomistic molecular models which incorporate fine chemical details such as overlap between the sites, fixed
bond angles and torsional potentials. The theory is applied to the description of the critical properties of all isomers ranging from
butane to octane and good qualitative agreement is found. We then show how TPT1 may be applied to the description of the
freezing transition of chain molecules. We apply the theory to chains of tangent hard spheres and Lennard—Jones chains and find
good agreement for the equation of state and free energies of the fluid and solid phases. Fluid—solid coexistence properties
predicted by the theory are in close agreement with simulation results. It is shown that for hard sphere and Lennard—Jones dimers
the stable solid structure is a disordered one, with the atoms forming a close packed arrangement, but with the bonds distributed
randomly within the solid.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction [6] and by Chapman et all7]. The theory can be
extended to systems where the monomer—monomer
Some time ago Wertheim presented a very successfulinteraction presents an attractive contribution as is the
theory to study the thermodynamic properties of hard- case for the Lennard—Jonés]) model[8,9], the square
core fluids interacting via short-range attracti(@sso- well potential [10] and the Yukawa potentiglll]. In
ciation) forces[1—4], such as hydrogen bonding fluids. this way it has been possible to derive equations of state
When the association strength becomes infinitely strong (EQOS for freely jointed tangent chaingformed by
chains are formed from a fluid of associating monomers tangent monomers with no constraint in the bonding
[5]. Therefore Wertheim theory can be used to describeangle or torsional stale The theory has been quite
the thermodynamic properties of chain models. In the successful in describing a number of properties of
simplest implementation of the theory, which is com- models formed by tangent monomésee the excellent
monly denoted as the first order thermodynamic pertur- review of Muller and Gubbins for additional references
bation theory(TPT1), the only information required in  [12]).
order to build an approximate equation of state for the | et us summarize briefly the main equations of
chain fluid is the equation of state of the monomer f|UId, Wertheim’s TPT1. Let us assume that we have a certain
together with its pair correlation function at contact. The nymber, N'¢f, of spherical monomer particles within a
equation of statdEOS) for hard sphere chains arising  certain volume v at temperatureT, and that these
from TPT1 was proposed independently by Wertheim naricles interact through a spherical pair potential
" *Corresponding author. Tel.+ 34-91-394-42-02; fax+34-394-  “"°'(r). We denote this fluid as the reference fluid and
41-35. the properties of this reference fluid will be labeled by
E-mail address: cvega@guim.sim.ucm.€€. Vega. the superscript ref. Let us also assume that in another
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container of volumé/ and temperatur&, we haveN = dynamic properties of branched and non-branched iso-
N''/m fully flexible chains ofm monomers each. Each mers. Obviously, one could still use TPT1 for branched
monomer of a certain chain interacts with all the other and non-branched isomers by using adjustable potential
monomers in the systelti.e. in the same molecule or parameters for each isomer. This approach although
in other molecules with the only exception being the useful for practical application§to reproduce experi-
monomey's to which it is bondepwith the pair potential  mental resultsis not so useful if one wishes to under-
u™(r). The chain system described so far will be stand and explain the origin of the difference in
denoted as the chain fluid. By fully flexible chains we properties of branched and non-branched alkanes. In the
mean that there is neither bending nor torsional poten-first part of this paper, we will describe a methodology
tials between the monomers of the chain. The only that it is able to extend TPT1 in order to describe
intramolecular interaction is the presence of a pair molecules with arbitrarily complex chemical details.
potential between monomers of the same chain separated his will permit a description of the effect of branching
by more than one bond. In this case, the free energy ofon the critical properties of alkane isomers.

the chain fluid as given by the TPT1 theory[-19: Another interesting problem is the freezing transition
of chain molecules. Quite recently we have noti¢2
A Arel, that the arguments used to arrive to E¢E) and (2)
_ 3 _ residual _ ref, ) - _
i AT — L Hm g — (m—T)iny ). @ make no special mention as to the actual nafire.

fluid or solid) of the phase considered. The question is

where p=N/V is the number density of chaing, is  then: could we use Eq41) and (2) to describe the
free energy of a fluid of free monomers interacting with duestion which has also important practical conse-
the reference potential, whilg®(/) is the background duences. Actually, many flexible molecules exhibit a
correlation function[20] evaluated at the bonding dis- Stable solid phase at room temperature and pressure. For

tance/. The equation of state which follows from Eq. instance, all linear alkanes with more than 20 carbon
(1) is given by atoms are solid at room temperature and pressure, and

the same is true for polyethylefi22]. In many industrial
ref processes one has to deal with the fluid—solid separation
8Iny*(%) f alkane mixtures. Theref theoretical descripti
Z=mZ® —(m—1)| 14pe——— | 2) of alkane mixtures. Therefore, a theoretical description
ap of the solid phase of flexible chain molecules would be
of great interest both from a fundamental and a practical
As can be seen, according to the above equations allpoint of view and the interest in the area is just starting
that is needed to obtain the free energy of the chain [23]. In a series of studies we have compared the results
fluid is the residual free energy of the reference mono- from Wertheim’'s TPT1 as applied to the solid phase to
mer system(at the same” and monomer densilyand simulation results. In Ref[21] it was shown that
the contact value of the background correlation function Wertheim’s TPT1 describes quite well the EOS of hard
of the monomer reference fluitboth properties of the  sphere chains fronrm=3 up tom=8. In Ref. [24] it
reference fluid obtained at the sanfeand monomer  was shown that Wertheim’s TPT1 also describes quite
number density as the chain fl)idwe denote Eqs(1) well the EOS of two-dimensional disk dimers. Also,
and(2) as Wertheim’s TPT1 theory. Despite the success recently [25] it has been shown that Wertheim's TPT1
of TPT1 in describing the equation of state of polymer predicts quite well the EOS and internal energy of the
fluids and their mixtures, there are still some problems LJ dimer in the solid phase. In these studies, however,
that cannot or have not yet been addressed by thisit was not possible to compare the free energies from
theory. We shall address two of such problems in this Wertheim’s theory to those of simulation. It is our goal
work. here to determine free energies for some of these models
Chain molecules found in nature, such as alkanes,in the solid phase, and to compare the predictions from
present high overlap of the interaction sites, an almost Wertheim’'s TPT1 to the simulation results. For that
constant bond angle and a torsional potential governingpurpose we have chosen the dimer model with two
the motion of the chain along the bond vectors. These monomer sitesn=2. For this model, the determination
fine chemical details which very much affect the equa- of the free energy of the solid phase via computer
tion of state cannot be incorporated in a clear manner simulation is relatively straightforward. In fact, for the
into TPT1, since it was originally designed for tangent hard dumbbell tangent dimer, previous calculations of
monomer models. Another related problem is the effect the free energy were available for the ‘ordered’ structures
of branching. For an homopolymer TPT1 does not [26]. This work sets out to determine the free energy of
distinguish between branched and non-branched iso-the dimer model for the true equilibrium ‘disordered’
mers. It is therefore questionable that the original TPT1 structure, and to prove that the disordered structure is
can be used to obtain differences between the thermo-indeed more stable than the ordered structure for the
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dimer model. Also, we determine the free energies of Owing to the flexible nature of the molecules, these two
the LJ dimer in the solid phase, for the ordered and for last contributions depend on molecular parameters which
the disordered structures, and to establish again clearlyare themselves a function of the conformational popu-
that the disordered structure is indeed more stable thanlation, X, of the system. The free energy then becomes
the ordered one. a functional ofX. In order to simplify the problem, we
This paper illustrates how Wertheim's TPT1 can be consider the rotational isomer approximatigSs) [30].
used for problems different from those for which it was In this way, the continuum of torsional angles is replaced
originally designed. The scheme of the paper is as by a discrete set of three torsional states;s, gauche +
follows. In Section 2 we shall show how Wertheim's and gauche—, so that the conformational space is
TPT1 when modified properly can provide a qualitative discretized. The Helmholtz free energy may be then
view of the variation of the critical properties of alkanes expressed as:
(linear and branched In Section 3, results of Werth-
eim’s TPT1 for several dimer models in the solid phase A=Ageat A innd X) + A intefX) @
will be presented, with special emphasis in the free

energy as determined from theory and from simulation. where X=(x;,x,,...,xg) iS now a vector whose compo-
Finally, in Section 4 the main conclusions of this work nents are the molar fractions of the conformers of the

will be presented. system(the number of possible conformers may be large
but remains finite within the RIS approximatipn

2. Liquid—vapor phase coexistence of short alkanes The ideal term is simply given by:

2.1. Model alkane Aideal/NkBTZIn(pAs) -1 (5

We describe the alkanes by means of a united atom 1N€ intramolecular term is given within the RIS
model. The groups CH, CH, CH and C will be @aPproximation by{30-32:
represented by a Lennard—Jon@s)) interaction site i— i
located on the position of the carbon atom. The number A, ./N =k,T Y x; In(x))+ Y xin, E4
of carbon atoms of the alkane will be denoted /by i—1 i—1
These interaction sites are responsible for all of the
intermolecular interactions and for those intramolecular
interactions, which take place between atoms more than
three bonds apart. The potential governing interactions
between sites andj is taken to be of the Lennard—
Jones type:

+ iiqinintra,i( L‘J) (6)

i=1

wheren,, is the number of gauche bonds of conformer
i, Unua(LJ) is the intramolecular LJ energy of conformer
i, g is the number of possible conformers of the
crl;,]lz [%ﬂ @) molecule, andE, is the torsional energy of a torsional

e bond in the gauche stafghe energy of the trans state
is taken as zem

As to the intermolecular contribution, we will consider
a first order perturbation theory. The total configurational
energy of the system is divided into purely intramolec-
ular and purely intermolecular parts. The latter part is
made up of the sum of all interactions between sites of
different molecules. The intermolecular site—site poten-
; ; tial is then decomposed into a repulsive teng, and
while the C-C~C bond anglé is set to the tetrahedral an attractive termy,, following the Weeks—Chandler—

value, i.e.0=109.5. The flexible nature of the molecule Andersen decomposition. The repulsive refe e term
is introduced at the level of the torsional degrees of : rsen decomposition. repuisive relerence ter

freedom. More specifically, we consider that the overall is obtained from he full LJ potential as follows:
potential about a given bond vector is the summnef

butane torsional potentials of the Ryckaert—Bellemans )2 (0u)°
form [29] for each possible dihedral angle. usi(r)= Eu (

r

u(ry)= 43,7«[[
ij ij

A different value fore and o will be assigned to the
CH;, CH,, CH and C groups. Crossed interactions
between different groups are considered to obey the
Lorentz—Berthelot rulef27]. The actual values we have
considered fore and o are set Il of Ref.[28]. The
carbon carbon bond distance is taken [&sl.53 A,

+ Eu r< 21/6()'k1

r r

r>2Y%q,,
2.2. Perturbation theory
(7
The Helmholtz free energy is given by the sum of
ideal, intra-molecular and intermolecular contributions. while the attractive perturbation term is obtainedias
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u—ug. The complete reference system is made uplbf  Eg.(9) can be summarized by saying that when describ-
the intramolecular interactions, plus the repulsive inter- ing the ‘realistic’ hard alkane model, we used Werth-
molecular interactions, while the perturbation contains eim’s TPT1 for an idelized model of,, tangent hard
all of the intermolecular attractive interactions. In this spheres. The parametet, is determined by imposing
way, the conformational population of the reference that the second virial coefficient of the ‘realistic’ hard
system is the same as that of the full system in the idealalkane is equal to that of the flexible tangent hard sphere
gas limit. model (as given by the original Wertheim’s TPT1 for
When the interaction potential is so divided, the tangent hard spherks
configurational contribution to the Helmholtz free ener-  The perturbative contribution to the Helmholtz free
gy may be split into two terms: energy may be determined by means of the following
equation:
Ainted X) =A ¢ X) +A (X) (8)

1 n n
where Ay(X) is the intermolecular free energy of the AvNksT=2SBp} ). uy'(r)gou(r:p)dmridr (10)
reference system when the population of conformers is k==t
given by the actual population of the full systex,
while A;(X) is the intermolecular free energy due to the

perturbation potential. - _ (10) constitute a general expression for the free energy
In order to obtain an explicit expression 8, we s fiexihle molecules where the conformational popula-

will require an approximation which consists in assign- yjon, is ohtained variationally from the total free energy
ing an effective hard body to the reference system. In ;¢ iha system[31,32,38. The approach is, however,

this work we will assume that a WCA site of type  4iher involved and will not be considered here. In this
may be mapped into a hard sphere site with an effective, e will henceforth assume that the conformational
diameter[28,33. Once an effective hard body has been population is given by the ideal gas limit and does not

assigned to the reference system, we still need ancpange with density. Although this approximation does
equation of state to describe a rather complex molecular,, o+ naiq for long chains, it is quite accurate for the

fluid made of overlapping hard spheres with fixed bond gt aikanes that will be considered hdgs,32,39—
angles and torsional potentials. Although this is in 4] |y this way, the intramolecular contribution is a
principle an extremely complicated problem, we have qnsiant for a given temperature and may be altogether

found that an empirical modification of Wertheim's jynqrad for the purpose of phase equilibria calculations.
perturbation theory works very well. Our approach ™ gyen within this approximation, the calculation of

consists in modifying the original expression for chains gow for arbitrary densities is a very complicated and
of tangent hard spheref6—8§ so that it predicts the iy consuming problem. We will therefore consider a

corrgc(:jt second V|_r|a_ll Coeff'cc'ﬁm of the molecule unde(; van der Waals approximation, whereby the site—site
consideration. Similar modifications were proposed ¢qgjation functions are assumed to be density inde-

some time agd34,33. This approach, which we call  pondent and equal to the site—site correlation functions
Modified Wertheim TheoryMWT), has been shown to ¢ ;arg density. In this wayl, becomes a simple linear

yield excellent results for hard linear and branched g,nction of the density which takes the following form:
alkanes[31,32,36,37. The resulting expression for the

free energy readg31]: Ay/NksT = — Batyanp (11)

whereg,,, is the site—site correlation function between
sites k,l of the reference system. Eq&4)—(6), (8)—

Ao _h= 1 2(1-y)° In the above equationg,q, is @ van der Waals
NkyT =(2a=1)n 2-) constant, which is determined by integration of the zero

density site—site correlation functions of the reference
_ 2 system,g’oy; :

_(2a-2) 1+y—0.5y (9)
(1=y)(1—=0.5y) " on -

_ Ayaw=—Y ZZﬂTJ uk!(r)g' op(r.Xe)r2dr (12
where « is the average non-sphericity parameter of the kol i
molecule and the packing fractiom, is given as the
product of the number density and the average molecular As to the zero density site—site correlation functions,
volume, 7. Comparison of this equation with the orig- they are determined numerically by means of an efficient
inal expression shows that our approach amounts toalgorithm proposed recently, which is based on the idea
finding an effective number of tangent hard spheres, that ¢g’o,; may be considered to be a Mayer function
m,;, which is related tax by m,=2a—1. More details with molecular reference frames placed on sit#$42].

of this approach may be found elsewh§sé,32,36,37. The argumeniXs’ emphasizes thag'y,, is obtained as
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Fig. 1. Compressibility factar for hardr-alkane chains as a function of packing fraction. Symbols, simulation results. Lines, theoretical predictions
from Wertheim TPT1 using an efective number of tangent sphegesAll interaction sites associated to each carbon atom have a hard sphere

of diameterd=3.7109 A.

an average of pairs of conformers sampled from an idealobtained from a knowledge of the second virial coeffi-

gas population.

To summarize, the final expression for the Helmholtz
free energy that we will consider is then given by the
sum of Egs.(5), (9), (11) and (12). More explicitly, it
takes the form:

ﬂ _ 3 — MJ
NkBT—In(pA )—1+(2a—1)|n[ -
_ 2
—(2a—2) S iV —Bayawp (13

(I=y)(1—0.5y)

where y=2p, while «, Z° and a,q, are molecular

cients. However, this requires rather time consuming
calculations. For that reason, instead of evaluating the
second virial coefficient we shall use a method recently
proposed(based on convex body geomeétrpat yields
accurate and quick predictions of the second virial
coefficient of chains with up to 100 monomer units
[36,47.

2.3. Results

2.3.1. Test of the reference equation of state

Before we consider the predictions of the mean field
equation of state that we have proposed, it is convenient
to test the performance of the reference equation of state

parameters determined as conformational averages fronemployed to describe the repulsive alkane models. In
the ideal gas population. Since we regard the system ad-ig. 1 we show the compressibility factor of hard linear

a multicomponent mixture of rotational isomers,and
7" are given by:

_q

a=Y xo (14
i=1

—  q

Py, (15
i=1

model alkanes, ranging fromhexane ta:-octane, as a
function of packing fraction. The lines are results
obtained from MWT, while the symbols are Monte
Carlo simulation results. The figure shows rather good
agreement between simulation and theory, even for
packing fractions as high as 0.55, close to the expected
freezing transition43]. Although MWT was originally
devised for linear alkaneg31,32,36, we have recently
shown that it is also very accurate for branched alkanes
[37,44. In Fig. 2 we show the equation of state for

where the sum runs over all possible conformers, while three isomers of octane, namelypctane, 2,5-dimethyl-
the molar fractions of the conformers are assumed to behexane and 2,2,3,3-tetramethylbutane. It is seen that the

those found in the limit of zero density. In principle, the
values ofa; needed in the previous equation may be

theory yields good results for all three substances, and
that choosingn,, as discussed previously allows one to
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clearly describe the effect of branching on the equation Table 1
of state of different alkane isomers. Such an effect is Effective chain lengthn,, and molecular volume”” (in units of @°,

. : . . the diameter of the hard sphere associated to each mohfoneome
Seer.] to b.e qum_a p_ronounced. Indeed’_ by compar'lng I:lg'hard alkane models. The value of the hard sphere diameter associated
1 with Fig. 2 it is seen that the differences in the o each monomer ig=3.7109 ‘A

compressibility factor of octane isomers may be consid-

erably larger than those observed by changing the actuailkane Moy 7
nqmber of carbon atoms in the chain. In order to see ,..hexane 1.76838 2027161
this more clearly, Table 1 presents the results of the n-heptane 1.94843 2.326571
effective number of spheres for the different substancesn-OCéane o 2.15632 2.625892
considered in this work. As expected, the effective chain 2->-dimethylhexane 1.89752 2.610603
P 2,2,3,3-tetramethylbutane 1.47211 2.569577

length of n-alkanes increases as the number of carbon
atoms increases. For branched alkanes, however, the
effective chain length no longer shows such a simple from the theory, due to the van der Waals approximation
dependence. Usually, the more heavily branched theemployed for the perturbative contribution, which has
alkane, the smaller its effective chain length will be. the effect of considerably underestimating the intensity
Although this qualitative statement is rather intuitive, of the site—site correlations. As an example, for the
quantification is another matter. Table 1 presents a critical temperature this would have the effect of consid-
quantitative statement of this fact. It is seen that the erably underestimating the experimental result. For this
effect of branching is such that 2,5-dimethylhexane is reason, instead of performing a direct comparison
effectively a shorter chain thartheptane, while 2,2,3,3-  between theory and experiment, we rescale the theoret-
tetramethylbutane is effectively shorter thashexane. ical results for a given alkane isomer by a factor such
This will obviously have a very significant effect on the that the theory yields exact results for the corresponding
critical properties of branched alkanes. n-alkane of that family. For example, in case of the
critical temperatures of a hexane isomer, we plot a
2.3.2. Critical properties of branched alkanes rescaled critical temperatur&;; , obtained as follows:

Now that the equation of state for the reference fluid T,
has been tested we may consider the predictions from?’;= T (16)
the mean field theory more confidently. We note, how- n—hex
ever, that one cannot expect a quantitative agreementwhereT$*R,., is the experimental critical temperature of

30 T T T T T T T
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Fig. 2. Compressibility factoZ for three different hard octane isomers as a function of packing fraction. Symbols, simulation results. Lines,
theoretical predictions from Wertheim TPT1 using an efective number of tangent spher@ interaction sites associated to each carbon atom
had a hard sphere of diametés 3.7109 A.
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Fig. 3. Critical temperatures for butane, pentane, hexane, heptane and octane isomers. For each group of isomers, the experimental critical
temperatures are arranged in decreasing order and compared with the correspastialgd theoretical results. The integer index associated to

each alkane is described in detail in REX8]. For each isomer both the experimental and the theoreficah the perturbation theory described

in the main text critical temperatures are presented.

n-hexane, whileT™® is the theoretical prediction for beyond our ability as a consequence bf our ignorance
isomer;i. on the exact force field of each molecul€?) the

In Fig. 3 the experimental critical temperatur?] description of the structure by a simple mean field term
for a number of alkanes with up to eight carbon atoms and (3) the truncation of the perturbation expansion.
are compared to those obtained from the rescaled theo-This work shows, however, that a good quantitative
retical predictions. For each group of isomers, the theory may be expected by improving the description
experimental critical temperature of a given alkane in of the perturbation contribution. The advantage of the
that group is plotted in order of decreasing temperature, simple van der Waals approach is that it allows for a
and the corresponding prediction from the theory is rationalization of the dependence of the critical para-
plotted for the same value of the abscissa. The figure meters on the molecular properties. Indeed, by differ-
shows rather good agreement with the experimentalentiation of the free energy, one finds that the pressure
results. We note that whereas the apparent quantitativeof the proposed equation of state takes the form:
agreement results from rescaling, the qualitative agree-
ment, i.e. ordering of the critical temperatures, is implicit p=py,(p;70) — @yawp? 17
in the theory. Particularly, it is seen that the theory is
able to order correctly from high to low the critical \yhere p,,, is the pressure as predicted by the MW
temperatures of all isomers of butane, pentane andequation of state. If we then apply the conditions for
hexane, despite the fact that the differences betweenthe critical point, we find that the critical properties may
them amount to a few Kelvin. For heptane and octane pe obtained in a closed form in terms of three molecular
isomers the agreement is less satisfactory but still ratherpgrameters, namely;; the molecular volumeg, the

reasonable. N non-sphericity, andyq,, the van der Waals constant:
Similar plots for the critical molar volume and pres-
sure are shown in Figs. 4 and 5, respectivélg. the V.= 7V¥a) (18)

experimental properties are represented in decreasing °
order and the theoretical predictions are rescaled as in

Eg. (16)). The agreement is seen once more to be rather7 .= av—‘fV”Tf(a) (19
good, and the decreasing trend in the critical volumes B

and pressures is found to be well captured, though,

admittedly, the theory is not able to predict the correct = _ M”p*( ) (20)

ordering for all the substances. Such a possibility is*“ 22°°¢
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Fig. 4. As in Fig. 3 for the critical molar volumes.

where V¥ ,T* andp* are all dimensionless, universal such as 2,3,3-trimethyloctane may have a larger critical
functions of . The explicit form of these functions is temperature than-octane, when it is expected that the
not important. What matters is th&f* is a monotoni- former should have a smaller van der Waals constant.
cally increasing function ofx, while T* andp* are  Table 2 presents a summary of the conclusions drawn
both monotonically decreasing functions@f44]. This form these equations.

knowledge is sufficient to use Eq618)—(20) to make

simple qualitative predictions on the variation of the 3. The freezing transition of chain molecules

critical properties in terms of the molecular parameters.

As an example, Eq(19) shows that the smallax, the In this section we will consider the freezing of chain
larger T.. This explains why highly branched alkanes molecules made up of either tangent hard spheres or
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Fig. 5. As in Fig. 3 for the critical pressures.
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Table 2 available [50]. By using the virial theorem in two
Dependence of the critical properties with the molecular parameters dimensions the contact value g((r) can be obtained.

as predicted from the van der Waals theory of this work Free energies of the two-dimensional hard disk have
Critical Molecular parameter glso been reporteq. Again all the ingrgdientg needed to
implement Wertheim’s theory for two-dimensional hard

property “ ” vw disk chains are available. Therefore the information
Ve b b — required to implement Wertheim's TPT1 to the solid
T, N N phase of hard chains, LJ chains in three dimensions and
Pe N N hard disk chains in two dimension is available. The next
Z N — — natural question, is the following: what is the stable

‘ 2" and ‘' indicate increase or decrease of the given property SOlid structure of hard sphere chains, LJ chains and hard
with respect to an increase in the corresponding molecular parameter,disk chains?
while ‘— indicates no dependence on that property. Let us briefly discuss the solid structure of fully

flexible tangent chains. For this model there is no

Lennard—Jones chains. For the former, the referenceenergetic penalty when the atoms of the chains adopt a
potential is a simple hard sphere potential and the bondclose-packed structuréfor instance the face centered
length/'=d is set to the hard sphere diameter. For the cubic fcc close-packed structdrewith an ordered
latter, the interaction sites are LJ beads, and the bondarrangement of atoms but with no long-range orienta-
length is set to/'=o. Note that for both systems, tional order in the bond vectors of the chains. Wojcie-
(/) =g(/), so that the background correlation function chowski et al.[51,54 were the first to realize this
is substituted by the radial correlation function in Egs. important feature in a continuum hard two-dimensional
(1) and(2). model. In fact Wojciechowski et al51,5 showed that

Let us analyze in more detail the information required the stable solid structure of tangent hard-disc dimers in
to implement Wertheim’s theory for the solid phase. Let two dimensions is formed by a close-packed arrange-
us start with hard spheres chains. For hard sphere chainsment of atoms with a disordered arrangement of bonds.
we need to know the EOS, residual free energy and The same idea holds for hard chains in three dimensions
contact value of the pair correlation function of the hard [53], and one may expect that the same would occur
sphere monomer in the solid phase. This information for a three-dimensional LJ chain. The bond disorder
had long been available. In fact, H445] proposed an  means that there is an additional contribution to the
EOS for the hard sphere monomer in the solid phaseentropy of the system arising from the degeneracy of
that reproduces quite well the simulation results of hard the structure.
spheres[46]. The contact value og(o) is obtained As we have all of the information required, we shall
easily from the EOS of the hard sphere solid by using now present computer simulation results for the free
the virial theorem. The free energy of hard spheres in energy of hard sphere tangent dimers and for LJ tangent
the solid phase can be obtained by thermodynamic gimers, and proceed to compare directly the free energies
integration of the EQOS if the free energy is known at & gptained from simulation to those obtained from Werth-

reference point. The free energy of the hard sphere solidgjny's TPT1 in the solid phase. This is certainly a severe
at a certain reference density was reported long ago byiest of the theory.

Hoover and Red47], and more recently by Polson et

al. [48]. In summary all the information required to . i

implement Wertheim's theory for the solid phase of hard /- The hard dimer solid

chains is available. What about LJ chains? For LJ chains,

van der Hoef[49] has recently proposed an analytical  In order to evaluate the fluid solid equilibrium of the
expression, which reproduces almost exactly the simu-hard dumbbell model, it is necessary to know the free
lation values of the free energies of the LJ solid. By energy of the disordered solid structure. For that purpose
differentiating the free energy expression with respect we have performed free energy calculations using the
to density the EOS of the monomer LJ in the solid Einstein Crystal method proposed by Frenkel and Ladd
phase is obtained. The contact valuegéé) for the LJ [54]. Typically we usedN=432 molecules, with ten
monomer was not available in the literature. However, values of the spring constants ranging from Oot®\,/

we recently performed a number of computer simula- (kT)=4x10® for the translational spring and from 0 to
tions to determing (o) for the LJ monomer system in  A,/(kT)=4x10° for the orientational spring. The meth-
the solid phase and proposed an expression to fit all theodology of the Einstein crystal calculation used here is
simulation results[25]. Therefore, Wertheim’'s theory similar to that described in Ref26] and we refer the
can be applied to LJ chains. The third example is that reader to this paper for further details. The reduced
of two-dimensional hard chains. For two-dimensional number density chosen for the free energy calculations
hard disks a good EOS for the monomer solid phase iswas p* =(N/V)0*=0.5490. This is not too far from the
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expected density of the solid at melting. We performed Table 4 _
free energy calculations for four different configurations Simulation results for the equation of state of hard dumbhiéis
f the disord d lid. In thi ble t tangent hard sphergén the disordered solid phase as obtained from
of the disordered solid. In this way we were able 10\, gijaions
determine the free energy for each ‘individual’ config-

uration. Free energy differences between individual con- po®/kT p*
figurations of the disordered solid were found to be less g, 06675
than 0.5%. The average free energy of those individual 55 0.6648
configurations was found to bé&/(NkT) =11.360.02). 50 0.6620
For comparison, the free energy of the dumbbell in the 45 0.6556
ordered solid structure, which will be denoted as CP1, 49 8'2228
has been calculated in R4R6] for the reduced density 0.6340
p*=0.5490 and found to bﬂ/(NkT)=lO.80[26]. This 25 0.6205
last result is obtained by thermodynamic integration 20 0.6007
from the free energy ap*=0.590, which is known 18 0.5917
from previous work26 16 0.5784
; 14 0.5645
As it can be seen, fop* =0.5490 the free energy of 7, 05449
the ordered solidA/(NkT)=10.80 is somewhat small- g 0.5166
er than the average free energy of an individual disor- 8 0.4495
dered solid configuration (A/(NkT)=11.360.02). 6 0.4189
However, there is an additional term to the free energy 4 0.3764
of the disordered solid that has not yet been included 3 0.3463
and which is not present in the ordered solid. In reality, is %-92’322

the disordered solid has an additional free energy con-
tribution arising from the fact that one must account for  The results correspond to the average of four independent config-
all the possible disordered arrangements of mo|ecu|esurations_. For pressures below th_ose of _the empty !ine the solid is
compatible with the solid phasée. number of ways in mechanically unstable and melts into an isotropic fluid.

which the bonds may be arranged within the fcc lajtice
This additional term to the free energy is usually denoted
as the degeneracy entropy. The degeneracy entropy of
dimer on a fcc lattice has been estimated by several
authors, and the best estimdt®/(NkT) = —1.5199 is
that of Nagle[55] (this number can also be obtained
from the combinatorial entropy of mixing of the Flory—
Huggins theory with a coordination number of )12
Therefore for the disordered solid the total free energy
at p*=0.5490 is given byA/(NkT)=11.36-1.52=
9.84(0.02), thus showing that the stable solid phase is
in fact the disordered solid. Notice that this result holds
also in two dimensions, as first proved by Wojciechows-
ki et al. [52]. The summary of the free energy calcula-
tions of the hard dimer fop* =0.5490 can be found in

Table 3, which also includes predictions from Werth-
fim’s theory. It is seen that fop* =0.5490, TPT1
predicts a free energy ofi/(NkT)=9.76, which is
comparable with the simulation resultd/(NkT)=
9.84(0.02). We point out that in order to obtain the free
energy of the disordered solid from simulations one
must first use the Einstein crystal methodology to obtain
the free energy of individual configurations and then
add the degeneracy contributiofi.e the number of
possible disordered structupesOn the contrary, in
Wertheim’s theory the degeneracy contribution is includ-
ed implicitly. A similar procedure to that described here
for three-dimensional hard dumbbells has been used by
Wojciechowski et al. for the two-dimensional dimer
problem[52].

! Note that in this work we have used the hard sphere diameter as  In Table 4 the EOS for the disordered dumbbell solid
unit of length, whereas we used the diameter of a hard sphere with gs gbtained from the Monte Carlo simulations of this
equal volume as the dimer in Ref26]. Since the free energies \vork is presented. Simulation results were obtained

include an ideal gas term of the form(pt), this means that there . .
is a trivial In2 difference between the free energies of this work and using NpT ensemble. We uséd=432 molecules with

those of Ref[26]. Of course this does not affect coexistence densities 4% 10* cycles for equilibration followed by another

but just the absolute values of the free energies. 4x10* cycles for average production. A cycle involved
Table 3

Helmholtz free energieéin NkT units) for the hard dumbbell model consisting of two tangent hard spheres

Method Structure Aginsteincrystal (NKT) Degeneracy A/(NKT)
Simulation Disordered solid 11.3@) —1.5194 9.84(2)
Simulation Ordered CP1 solid 10.80 0 108
Theory Disordered solid * * 9.76

The results correspond to the dimer gt=0.5490 in the disordered solid, and in the ordered solid labeled as CP1 irfZgefThe free
energies were obtained from simulation or from Wertheim’'s TPT1 theory of the solid phase.
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Fig. 6. Equation of state for hard dimers. Filled squares are simulation results for the fluid phase. Circles are results for thengptgrand
disordered(filled) solid phases. The dash-dotted line and the thick-dashed line are tie lines from simulation for the coexistence of fluid with
ordered and disordered solid phases, respectively. The full lines are results from TPT1, with the tie line corresponding to the fluid-disordered
solid coexistence. The pressure is giverkTiy o® units.

a trial move per particldétranslation or rotationand a Wertheim’s theory predictp/=0.4915 pF=0.5470 ,

trial attempt of changing the volume of the system. The p=12.24 andu/(kT)=32.06 in quite good agreement.

acceptance ratio was kept close to 30% for translational, The coexistence pressure as determined from our free

rotational and volume changes. Results presented inenergy calculationp=12.62 is consistent with the fact

Table 4 correspond to the average of the EOS obtainedthat the disordered solid becomes mechanically unstable

for four different configurations of the disordered solid. for pressures below=10. In Fig. 6 the transition fluid-

All pressures of this work are given ¥/ ¢ units. The CP1 ordered solid is also presented. As can be seen the

simulations began at the highest pressure, which wasfluid-CP1 ordered solid occurs at a higher presdiiue

then slowly decreased. For pressures below 10 thep=17.28 than the fluid-disordered solid transitidp=

disordered solid became mechanically unstable and melt-12.62. Therefore the fluid-ordered solid CP1 transition

ed into an isotropic fluid. The line in Table 4 separates never occurs.

the simulation results of the solid from those of the In Fig. 7, coexistence densities for the fluid—solid

fluid phase. equilibrium of flexible chains are plotted as a function
In Fig. 6 we present simulation results for the EOS of m (the number of monomers of the chairgimula-

of the fluid, ordered solid and disordered solid, together tions results form=1 are taken from Ree and Hoover

with predictions from Wertheim’s theory for the fluid [47], those form=2 from this work, and those fon=

and solid phases. The first thing to be noted from Fig. 3 up tom=8 from Malanoski and Monsoib3]. Lines

6 is that the EOS of the ordered CP1 and disorderedcorrespond to theoretical predictions as obtained from

solid are quite similar, as already suggested some timeWertheims’s theory for the fluid and solid phases. As

ago[26]. Also, Sear and Jackson assumed that the EOScan be seen, the agreement between theory and simula-

of the ordered solid was similar to that of the disordered tion is quite good. Similar good agreement is found in

one, when they first proposed a TPT1 like treatment for Fig. 8 for the coexistence pressure of hard sphere chains.

the dimer in the solid phasks6]. It is also clear from To summarise, we have shown that the stable solid

Fig. 6 that Wertheim'’s theory is able to describe quite for the dumbbell dimer is a disordered one, and that

well the fluid and solid branches of the dumbbell model. Wertheim’s theory is able to yield a good description of

Not only that but also the agreement between theorythe EOS and free energies of the disordered solid.

and simulations for the location of the fluid solid

equilibrium is quite good. In fact, according to the 3.2. The two center Lennard—Jones dimer

simulation results of this work the fluid—solid coexis-

tence of the dumbbell model occurs fpj=0.4950 For the two center Lennard—Jones mot&CLJ) we

p¥=0.5525 p=12.62 andu/(kT)=32.82. However, have performed free energy calculations for two different
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Fig. 7. Fluid and solid coexistence packing fractions as a function of chain lemdgthe solid phase refers to the disordered phdse fully
flexible tangent hard sphere chains. The filled circles are simulation results from Malanoski and Ni8jsahe filled triangles are simulation
results from this work. Full lines are theoretical predictions from TPT1.

reduced temperature$* =kT/e, namely T*=1 and energy(when the volume was changed these long range
T*=2. In both cases we used fifteen different values corrections were included within the Markov chhin
for the translational and rotational spring constants Details of the calculations are similar to those described
ranging from 0 to X 10*. The densities considered by Vega and Monsof67]. For the ordered CP1 structure
where p* =0.5490 forT* =1 and p* =0.5800 forT* = we employed 256 molecules, while for the disordered
2. The site—site pair potential was truncated-a.5¢ structure we used 432 molecules. As for the hard sphere
and long range corrections were added to the internaldimers, calculations were performed for four different

Fig. 8. Coexistence pressures for the fluid-disordered solid transition of fully flexible tangent hard sphere chains as a function of chain length.

Symbols as in Fig. 7. The pressure is givenkiy o units.



C. Vega et al. / Journal of Molecular Liquids 113 (2004) 37-51 49

Table 5

Helmholtz free energies as obtained from simulation for the 2CLaF &0.5490 andl* =1

Method Structure Aginsteincrystaf (NKT) Degeneracy A/(NKT)
Simulation Disordered solid —-4.17(3) —1.5194 —-5.69(3)
Simulation Ordered CP1 solid —4.76 (3) 0 —4.76 (3)
Theory Disordered solid * * —5.69

Results for the disordered solid and the ordered salehoted as CP1 in Ref26]). Results from Wertheim TPT1 theory are also presented.

configurations of the disordered solid. Results presentedfrom simulation and from Wertheim’s theory f@F = 1.
here correspond to the average of those disorderedThe free energy from simulation was obtained from the
configurations. The final value of the free energy of the free energy atp* =0.5490 and using thermodynamic
2CLJ disordered solid was obtained by adding the integration with the EOS as obtained from NpT simu-
degeneracy contribution-1.5194 to the free energy lations. As can be seen, the agreement between theory
calculations obtained from the Einstein crystal method. and simulation is quite good. This proves that Werth-
Results from the free energy calculations =1 eim’s theory can be used with confidence to predict all
are presented in Table 5. As can be seen the Einsteirproperties, internal energy, EOS and free energy of the
crystal energy of the ordered structure is smaller than LJ disordered solid.
that of the disordered solid. However, once the degen- In Table 6 the free energy of the disordered solid at
eracy entropy is added, the free energy of the disordered™ =2 and p* =0.58 as obtained from this work is
solid becomes smaller. Therefore for LJ dimers the shown. Results from Wertheim theory are also shown.
disordered solid structure is also the most stable one. InAs can be seen again, Wertheim’s theory yields quite
Table 5 the prediction of Wertheim’s theory for the free good predictions of the free energy of the disordered
energy of the solid is also presented. As can be seen thesolid, although the agreement is slightly worse than for
agreement between theory and simulation is impressive.T* =1.
In a previous paper we have shown that Wertheim’'s
theory gives quite good results for the EOS and internal 4. Conclusions
energy of the solid disordered phalg5]. In this paper
we show for the first time that the agreement for the In this paper we have shown how Wertheim’'s TPT1
free energy is also excellent. In Fig. 9 the free energy theory can be used successfully to describe systems for
of the LJ dimer disordered solid is shown as obtained which the theory was not originally designed. The two

0.5 0.55 0.6 0.65

P

Fig. 9. Helmholtz free energy as a function of density for the disordered solid phase of the LJ difter lat Symbols, simulation results from
this work; lines, theoretical predictions from TPT1. Due to a misprint the coeffi¢iedt, j=1 of Table 1 of Referencf25] should read 69.219
(and not 68.219



50

Table 6

C. Vega et al. / Journal of Molecular Liquids 113 (2004) 37-51

Helmholtz free energies as obtained from simulation and from Wertheim TPT1 theory of the 2CLJ mwdeltab80 and™* =2 in the disordered

solid structure

Method Structure Aginsteincrystal (NKT) Degeneracy A/(NKT)
Simulation Disordered solid 3.1®@) —1.5194 1.61(2)
Theory Disordered solid * * 1.65

presented examples are, the description of realistic mod-additional financial support. A. Galindo would like to
els of alkanes, linear and branched, and the descriptionthank the Engineering and Physical Sciences Research
of flexible molecules in the solid phase. Main conclu- Council for the award of an Advanced Research

sions of this work are the following:

® Wertheim’s TPT1 can be used to describe the EOS
of realistic hard repulsive models of alkanes, by
using the actual volume of the model, and an effec-
tive number of tangent spheres,. This effective
number can be obtained from the second virial
coefficient of the hard model.

e Hard models of branched alkanes present a lower
value of the compressibilitffor a certain volume
fraction) than the corresponding linear isomers. This
behavior may be rationalized in terms of the non-
sphericity factorg, since the compressibility increas-
es linearly witha at constant packing fraction and
« is found to decrease with branching.

® The mean field theory proposed in this work is able
to capture the main trends in the critical properties
of linear and branched alkanes.

® \Wertheim’s TPT1 theory can be used successfully to
describe the solid phase of flexible models. This is
true for tangent hard sphere models, and for tangent
LJ models. In this work it has been shown that
Wertheim’s TPT1 yields free energies of the solid
phase in excellent agreement with those obtained
from simulation.

® \We have proved by performing free energy calcula-
tions, that for the hard sphere and LJ dimer, the
stable solid structure is one with an fcc arrangement
of atoms, but with a disordered configuration of
bonds.
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