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The global phase behavior~i.e., vapor-liquid and fluid-solid equilibria! of rigid linear Lennard-Jones
~LJ! chain molecules is studied. The phase diagrams for three-center and five-center rigid model
molecules are obtained by computer simulation. The segment-segment bond lengths areL5s, so
that models of tangent monomers are considered in this study. The vapor-liquid equilibrium
conditions are obtained using the Gibbs ensemble Monte Carlo method and by performing
isobaric-isothermalNPT calculations at zero pressure. The phase envelopes and critical conditions
are compared with those of flexible LJ molecules of tangent segments. An increase in the critical
temperature of linear rigid chains with respect to their flexible counterparts is observed. In the limit
of infinitely long chains the critical temperature of linear rigid LJ chains of tangent segments seems
to be higher than that of flexible LJ chains. The solid-fluid equilibrium is obtained by Gibbs–Duhem
integration, and by performingNPTsimulations at zero pressure. A stabilization of the solid phase,
an increase in the triple-point temperature, and a widening of the transition region are observed for
linear rigid chains when compared to flexible chains with the same number of segments. The
triple-point temperature of linear rigid LJ chains increases dramatically with chain length. The
results of this work suggest that the fluid-vapor transition could be metastable with respect to the
fluid-solid transition for chains with more than six LJ monomer units. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1642603#

I. INTRODUCTION

In simple fluids the fluid-solid equilibrium is determined
by packing considerations, and freezing can be understood in
terms of the freezing of hard spheres. In molecular systems
shape, polarity, and flexibility must also be considered. Al-
though it is generally assumed that flexibility is not crucial in
determining the fundamental phase behavior of many chain-
like fluids, careful analysis reveals that the vapor-liquid criti-
cal points of chainlike molecules with different degrees of
flexibility are different.1 It is also well known that systems of
rigid nonspherical molecules can exhibit liquid crystalline
phase behavior, which is never observed in fully flexible sys-
tems. Similarly, it can be expected that flexibility will play an
important role in determining the stable solid structure and
its thermodynamic properties.

A well-established model to study chainlike molecular
systems is one in which the molecules are modeled as chains
formed by connected spherical segments. In these models the
pair potential between the monomers~either in the same or
in different chains! that form the chains is given by a spheri-

cal potential. Such models incorporate two essential features:
the excluded volume of the chains, and the connectivity be-
tween segments. Chain molecules of tangent segments can
be considered fully flexible unless bending and torsional po-
tentials are explicitly incorporated. This model is commonly
used to represent polymer phase behavior~see Ref. 2 and
references therein!. Rigid molecules of connected spherical
segments can be constructed by fixing the bond angles and
internal degrees of freedom, so that the intramolecular en-
ergy is constant. In the case of linear molecules liquid crys-
talline phase behavior can be observed with this model.3,4

Semiflexible models can also be considered within the same
framework by incorporating bending and torsional potentials.

Computer simulations have played a crucial role in the
understanding of molecular systems in general, and of the
relation of molecular features and macroscopic phase behav-
ior in particular. Dickman and Hall5 provided the first com-
puter simulation data for the fluid equation of state of fully
flexible chains of 4, 8, and 16 tangent hard-sphere segments,
which served as a benchmark to test statistical mechanical
theories of chain molecules in the late 1980s. Also in the late
1980s, Frenkel and co-workers6 were able to confirm the
predictions of Onsager7,8 showing that a fluid of hard rods
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can exhibit liquid crystalline phase behavior. Liquid crystal-
line phases of semiflexible9,10 and rigid chain molecules of
tangent hard spherical segments3,4 were later presented.

Among the theories developed for flexible chains, the
thermodynamic perturbation theory~TPT! of Wertheim11–16

is one of the most successful and widespread. In this theory
the properties of the chain system can be obtained provided
the properties of the reference monomer system are known;
at the first level of approximation~TPT1! the properties are
not dependent on the geometrical details of the chains.15 This
prediction was confirmed by computer simulations, which
showed that both flexible and rigid chains present similar
equations of state.17 However, a closer look into the behavior
of the two systems revealed some differences. Vegaet al.18

studied in some detail the effect of flexibility in chain models
built from tangent hard-spherical segments. Concentrating on
the fluid phases, they noted that the virial coefficients of
flexible and rigid hard chains differ significantly. In the in-
termediate region, as expected,17 they confirmed that the
equations of state of the two models are very similar. At
higher densities, but still in the fluid region, linear rigid chain
molecules with more than five tangent segments exhibit liq-
uid crystalline phases3,4,9,10 ~as predicted by Flory19! which
are not seen in fully flexible chain models of any length.

When attractive interactions are incorporated in these
models, gas-liquid phase behavior can also be considered.
The TPT1 approach of Wertheim has been used to model the
fluid-phase equilibria of hard chains with dispersion interac-
tions treated at the mean-field level of van der Waals,16

Lennard-Jones chains,20–24 and chains of square-well25 and
Yukawa26 segments. The approach is widely used to model
the phase behavior of chainlike molecules, fromn-alkanes to
polymers, and their mixtures~see Refs. 27 and 28 for recent
reviews!. As mentioned above, the TPT1 does not take into
account flexibility or conformational effects. Based on the
fact that the equations of state of rigid and flexible hard
chains are very similar in the intermediate density range, it is
generally assumed that flexibility does not have a crucial
effect on the fluid phase behavior. Recent works have chal-
lenged this assumption, however. First, as discussed above, it
is clear that if a chainlike molecule is ‘‘stiff’’ enough, liquid
crystalline phases can be expected to appear, which may in-
terrupt the vapor-liquid phase behavior~see Ref. 29 for an
example of the global phase behavior of the Gay–Berne
model!. Even in the case of semiflexible chains in which
liquid crystalline phases are not observed, Shenget al.1

noted a decrease in the vapor-liquid critical point of semi-
flexible Lennard-Jones chains of tangent segments. Carrying
out computer simulations, they predict a critical temperature
7% lower than that of a flexible chain in the limit of infinite
chain length.

In terms of the global phase behavior of chain mol-
ecules, it is only recently that solid phases are being consid-
ered; the computation of solid-fluid phase transitions of
chain molecules by computer simulation is a major undertak-
ing. Empirical rules are frequently used in order to avoid the
expensive calculation of the free energy. These techniques
have been particularly useful in the study of finite systems
and cluster growing in the phase transitions of atomic sys-

tems, including Lennard-Jones models~see Ref. 30 and ref-
erences therein!, and homopolymers.31,32As in the formation
of liquid crystalline phases, it is apparent from the beginning
that molecular flexibility plays a crucial role in the stabiliza-
tion of the solid phase. It was first suggested by
Wojciechowskiet al.33,34 that the stable structure of a system
of flexible molecules of tangent spherical segments should
be one exhibiting an fcc close packed arrangement of mono-
mers, but with random bonds, i.e., with no long-range orien-
tational order between bond vectors. Such a structure is re-
ferred to as a disordered solid. In the case of semiflexible and
rigid molecules, the system cannot adopt a disordered solid
structure due to the restrictions imposed by the molecular
architecture of the model. The stable structures of rigid and
semiflexible chains are expected to be given by layers of
molecules arranged in such a way that all the molecules in a
layer point in the same direction. In general, molecules in
different layers may point in different directions,35 although
differences in free energies of these different arrangements of
the layers are expected to be small~at least this was the case
for systems of hard dumbbells, where differences in free en-
ergies between different solid structures differing only in the
orientation of the layers were found to be quite small35!. One
of the possible structures is the so called CP1 solid, in which
the molecular axes in all the layers point in the same
direction.35 A similar structure was also considered by Pol-
son and Frenkel36 when dealing with the fluid-solid transition
of semiflexible tangent Lennard-Jones molecules. Polson and
Frenkel noted that increasing chain stiffness results in the
stabilization of the solid phase~at a fixed temperature the
solid-fluid transition pressure is lowered!, and that the den-
sity gap at the transition is broadened. As we will see later in
this work, we observe the same trends in comparing a fully
flexible and a linear rigid model of Lennard-Jones~LJ!
chains.

Very recently it has been shown that Wertheim’s TPT1
can also be applied to the solid phase,37 allowing the study of
fluid-solid equilibrium using the TPT1 for both fluid and
solid phases. The fluid-solid equilibria of fully flexible hard-
sphere chains,37 fully flexible hard disks38 ~two dimensions!,
and fully flexible LJ chains39–41 have been predicted, yield-
ing good agreement with simulation. A mean-field theory in
the spirit of Longuet-Higgins and Widom42,43 has also been
used to model fully flexible hard-chain molecules interacting
via mean-field dispersion interactions.44 Studies of systems
with attractive forces have revealed the fact that fully flexible
chains present enormous liquid ranges. The predicted ratio of
Tt /Tc is of the order of 0.1 for very long chains. For argon
this ratio is about 0.55, for propane~which has one of the
largest liquid ranges known! it is about 0.23, and for poly-
ethylene it is about 0.35–0.40.45,46 One may conclude that
fully flexible LJ chains present one of the largest liquid
ranges that one may obtain for a molecular model. How
would the situation change for a rigid model? It is difficult to
answer this question. First, it has been shown47 that, although
Wertheim’s TPT1 accurately describes the properties of flex-
ible chains in the solid phase, it fails to describe the proper-
ties of linear rigid chains in the solid phase. Therefore theo-
retical predictions of the phase diagram of linear rigid chains
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are not available. Vega and McBride,47 and more recently
Blaset al.48 implemented an empirical scaling that describes
well the properties~equation of state and free energy! of hard
linear chains in the solid phase. When this theoretical de-
scription is used in combination with a mean-field term~fol-
lowing Longuet-Higgins and Widom42! for the case of linear
rigid chains, the predictedTt /Tc ratio is seen to increase for
increasing chain length, causing the vapor-liquid equilibrium
to become metastable with respect to freezing for long
chains. This is a surprising prediction that was one motiva-
tion for this work. Although theories of stiff macromolecules
have suggested that the nematic-isotropic transition may pre-
empt the vapor-liquid phase transition, this has not yet been
confirmed. In a recent work by Ivanovet al.49 a wide density
difference is seen between the nematic and isotropic phases,
which points toward the suppression of the vapor-liquid-
nematic triple point

Our aim in this paper is to study the phase diagram of
linear rigid LJ chains to illustrate the similarities and differ-
ences between flexible and linear chains, both for the vapor-
liquid equilibrium and for the fluid-solid equilibrium. We
will check whether theTt /Tc ratio increases with increasing
chain length, as predicted by the theory recently proposed.48

In addition, we hope that the simulation data provided here
will be useful in the development of theoretical treatments
for these systems.

II. SIMULATION DETAILS

We consider Lennard-Jones model chain molecules
formed by m identical Lennard-Jones sites~monomers! of
diameters and dispersive energye. The molecules are mod-
eled as linear and rigid with segment-segment bond distances
L5s ~meaning that chains of tangent segments are consid-
ered!.

The pair interaction between two molecules is given by

u~1,2!5(
i 51

m

(
j 51

m

4eF S s

r i j
D 12

2S s

r i j
D 6G , ~1!

wherer i j is the distance between site~monomer! i of mol-
ecule 1 and sitej of molecule 2. Since the model is rigid the
intramolecular energy is constant, and we set it to zero.
Therefore the internal energies reported here are due only to
intermolecular interactions~and not to intramolecular inter-
actions!. In this work we carry out computer simulations for
systems of linear rigid LJ chain molecules of lengthm53
~3CLJ! andm55 ~5CLJ!.

As in previous work,40 the global phase diagrams for the
systems of interest are determined using various simulation
techniques. Before describing the details of each of the tech-
niques it is useful to note that in all the simulations per-
formed the site-site LJ pair potential is truncated atr c

52.5s, and that long-range corrections are added to all the
computed thermodynamic properties~internal energy, pres-
sure, and chemical potential! by assuming that the site-site
pair correlation function is equal to unity beyond the
cutoff.50 A cycle is defined as a trial move per particle~dis-
placement of the center of mass and/or molecular rotation!,
and a trial volume change. In the case of the Gibbs ensemble

simulations a cycle also includesNex attempts to exchange
particles between the boxes. Throughout this work we use
reduced units, so thatT* 5T/(e/kB), r* 5rs35(N/V)s3,
P* 5P/(e/s3), andU* 5U/(Ne).

A. Vapor-liquid equilibria

The vapor-liquid phase equilibria of a number of flexible
LJ chain molecules with tangent segments have been studied
previously. The two-center (m52) system has been studied
by Dubeyet al.51 and Stollet al.,52 and recently by some of
us.40 Blas and Vega23,53presented data for the flexible system
with m53, obtained by carrying out Gibbs ensemble Monte
Carlo ~GEMC! simulations.54 Escobedo and de Pablo55 used
the GEMC technique with a configurational bias to study
systems of LJ flexible chains of 4, 8, 16, and 32 monomers.
Longer chains have been studied by Shenget al.,56 who used
the NPT1test particle method to obtain the vapor-liquid
phase diagrams of polymerlike LJ flexible chains of 20, 50,
and 100 tangent segments.

The phase diagram of linear rigid LJ chain molecules
has been considered previously only by Perera and Sokolic
for molecules with a reduced bond lengthL* 50.505.57 The
case of ‘‘tangent’’ linear rigid LJ chains withL* 51 has not
been considered previously~to the best of our knowledge!.
Hence, we carry out standard GEMC calculations to deter-
mine the vapor-liquid coexistence of the two systems of in-
terest here, which will be used for comparison with the flex-
ible ones. At each temperatureT* , initial configurations for
the gas and liquid phases are generated by first equilibrating
two subsystems~each containing 500 molecules! at the given
T* and with initial vapor and liquid densities close to the
expected coexistence values. Constant-volumeNVT Monte
Carlo simulations are carried out in this equilibration stage,
consisting of approximately 10 000–20 000 cycles. The re-
sulting configurations are subsequently used as starting con-
figurations for the Gibbs ensemble run, which consisted of
50 000 equilibration cycles and 50 000 cycles for collecting
averages. The coexistence densities, internal energies, pres-
sures, and chemical potentials for each of the temperatures
considered are presented in Tables I~linear rigid 3CLJ! and
II ~linear rigid 5CLJ!. The number of particle exchanges and
the probabilities of insertion are also presented in the tables.
As can be seen, at low temperatures the probability of trans-
ferring particles between the two subsystems becomes ex-
tremely low, and the Gibbs ensemble technique is found im-
practicable. Reliable estimates of the coexistence liquid
densities at low temperatures can instead be obtained by car-
rying out NPT simulations at zero pressure. These are pre-
sented in Table III for them53 ~3CLJ! and m55 ~5CLJ!
systems. The procedure is expected to be most accurate at
the lowest temperatures, but it can be seen that even at the
highest temperature considered the errors are less than 0.1%
as compared to the GEMC results of Tables I and II.

The critical temperaturesTc* and densitiesrc* are ob-
tained using the simulation results for the vapor and liquid
coexistence densities and the relations

r l* 2rv* 5A~T* 2Tc* !b ~2!

and
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r l* 1rv*

2
5B1CT* , ~3!

wherer l* andrv* are the liquid and vapor coexistence den-
sities at temperatureT* , A, B, andC are constants, andb is
the corresponding critical exponent; a valueb51/3 was as-
sumed here. The critical pressurePc* is obtained using the
relation

ln P* 5a1bT* , ~4!

whereP* is the saturation pressure at temperatureT* , anda
andb are constants.

The vapor-liquid critical conditions of the linear rigid LJ
chains withm53 are found to beTc* 52.08160.016, Pc*
50.06060.017, andrc* 50.08960.004 ~where r* is the
molecular number density!. The critical conditions of the
system with rigid chains of lengthm55 are Tc* 52.49
60.06,Pc* 50.03460.012, andrc* 50.04660.009.

B. The solid phases

The simulation details regarding the solid phase are
similar to those of previous work35,39,40,58and hence we dis-
cuss here only the main features. In this work the ordered
solid CP1 structure is considered, as was done by Sanz
et al.41 for LJ rigid chains. In the CP1 structure all molecules
of a layer point in the same direction, and all layers point in
the same direction. The monomers of the molecules form an
fcc close packed structure at the ‘‘close packing’’ density. In
the case of the system withm53, N5400 molecules are
used, by arranging four layers of 100 molecules each. In the
case of the model withm55, N5288 molecules are used by
arranging two layers of 144 molecules each. Since the result-
ing boxes are noncubic, the Rahman–Parrinello59 modifica-
tion of the constant-pressureNPT Monte Carlo technique is
used in order to allow for nonisotropic changes in the simu-
lation box shape.60 The simulations were started from con-
figurations at very high pressures, where the density is close

TABLE I. Vapor-liquid coexistence properties for linear rigid LJ chains with bond lengthL* 51 and chain lengthm53 obtained from Gibbs ensemble Monte
Carlo simulations for systems containing initially 5001500 molecules.T* 5kT/e is the reduced temperature,r* 5rs3 the reduced number density of
molecules,U* 5U/Ne the reduced residual internal energy per particle,P* 5Ps3/e the reduced pressure, andm* 5m/e the reduced chemical potential. The
reported pressures and chemical potentials refer to values in the vapor phase~these values are equal to the corresponding values in the liquid phase within the
statistical uncertainties!. The probability of transferring a particle between the two boxes ‘‘Prob’’ and the number of insertion attemptsNins are also given.

T* rv* r l* Uv* Ul* P* m* Prob Nins

2.05 0.042~4! 0.133~9! 22.5~2! 26.8~4! 0.0478~18! 28.48~4! 0.03603 250
2.04 0.042~4! 0.142~5! 22.5~2! 27.2~2! 0.0470~19! 28.46~4! 0.02822 350
2.02 0.037~2! 0.145~7! 22.27~14! 27.3~3! 0.0431~15! 28.47~3! 0.02467 500
2.00 0.034~2! 0.152~4! 22.13~14! 27.68~19! 0.0408~12! 28.47~3! 0.01884 600
1.98 0.0300~13! 0.159~3! 21.93~8! 28.04~15! 0.0373~10! 28.48~2! 0.01506 550
1.95 0.0278~18! 0.165~3! 21.83~11! 28.36~16! 0.0347~12! 28.47~3! 0.01225 700
1.90 0.0213~15! 0.175~3! 21.46~10! 28.87~18! 0.0283~13! 28.52~4! 0.00784 800
1.85 0.0169~7! 0.185~2! 21.20~5! 29.41~11! 0.0231~7! 28.55~2! 0.00473 900
1.80 0.0131~6! 0.192~2! 20.97~4! 29.86~12! 0.0184~6! 28.63~3! 0.00305 1000
1.75 0.0096~5! 0.1987~18! 20.74~4! 210.25~10! 0.0139~6! 28.76~4! 0.00205 1250
1.70 0.0079~3! 0.2071~16! 20.63~2! 210.76~9! 0.0113~3! 28.78~2! 0.00120 1500
1.65 0.0063~3! 0.2137~16! 20.52~2! 211.16~10! 0.0090~3! 28.81~3! 0.00071 2000
1.60 0.00467~19! 0.2201~14! 20.40~2! 211.57~9! 0.0067~2! 28.93~3! 0.00042 2500
1.55 0.00361~19! 0.2260~13! 20.324~19! 211.96~9! 0.0051~2! 29.00~4! 0.00024 3000
1.50 0.00278~13! 0.2325~15! 20.261~17! 212.39~10! 0.00386~17! 29.05~4! 0.00013 7500

TABLE II. Vapor-liquid coexistence properties for linear rigid LJ chains with bond lengthL* 51 and chain lengthm55 obtained from Gibbs ensemble
Monte Carlo simulations. Reduced quantities are defined as in Table I.

T* rv* r l* Uv* Ul* P* m* Prob Nins

2.475 0.0217~14! 0.069~5! 23.5~2! 29.3~6! 0.0304~10! 211.86~3! 0.02032 600
2.450 0.0185~14! 0.074~4! 23.1~2! 210.0~4! 0.0274~11! 211.89~3! 0.01590 700
2.425 0.0188~10! 0.083~3! 23.19~18! 211.1~4! 0.0269~10! 211.82~3! 0.00966 800
2.400 0.0152~8! 0.084~3! 22.65~13! 211.3~4! 0.0235~8! 211.89~3! 0.00855 800
2.375 0.0137~10! 0.089~2! 22.44~17! 211.9~3! 0.0216~9! 211.91~3! 0.00597 1000
2.350 0.0123~4! 0.092~2! 22.22~7! 212.4~3! 0.0198~4! 211.922~18! 0.00423 1000
2.325 0.0114~5! 0.0956~18! 22.11~10! 212.9~3! 0.0184~6! 211.92~3! 0.00321 1200
2.300 0.0094~4! 0.098~2! 21.78~8! 213.2~3! 0.0159~5! 212.02~2! 0.00268 1200
2.275 0.0089~5! 0.101~2! 21.71~10! 213.6~3! 0.0149~6! 212.00~3! 0.00186 1250
2.250 0.0076~3! 0.1028~17! 21.50~6! 214.0~2! 0.0131~4! 212.08~2! 0.00138 1000
2.200 0.0061~3! 0.1086~16! 21.23~8! 214.9~2! 0.0107~4! 212.15~2! 0.00078 2000
2.150 0.0051~3! 0.1131~16! 21.07~7! 215.6~2! 0.0089~5! 212.17~5! 0.00045 5000
2.100 0.00392~10! 0.1182~13! 20.86~3! 216.4~2! 0.00700~16! 212.29~2! 0.00022 10000
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to the close packing limit~no true close packing can be de-
fined when a soft potential such as the LJ is used, but the
reduced number density of the hard-sphere model at close
packing can be used as a good starting point!, and were
expanded to lower densities by performingNPT simulations
at slowly decreasing pressures. A typical run of the solid
phase involved 40 000 equilibration cycles followed by
40 000 cycles for obtaining equilibrium properties. Some
representative simulation results for the solid phase of the
models withm53 andm55 are presented in Table IV.

In order to determine the fluid-solid equilibrium, the free
energy of the fluid and solid phases must be calculated. The
free energyA of the fluid phase at densityr can be obtained
by thermodynamic integration along an isotherm:

A~r,T!

NkBT
5@ ln~rs3!21#1E

0

r @Z~r8,T!21#

r8
dr8, ~5!

where Z is the compressibility factor. In this equation, the
first term on the right-hand side stands for the ideal gas con-
tribution to the free energy~we have arbitrarily set the de
Broglie wavelength tos!, and the rest is the residual part.
Following this expression, the free energies of the fluid phase

at a temperatureT* 54 ~supercritical temperature! were ob-
tained via integration of the compressibility factor along the
corresponding isotherm. Some representative results of these
simulations for the fluid phase are presented in Table V.

In the case of the solid phase, the free energies can be
calculated using the Einstein-crystal methodology.61 The
method used here is quite similar to the one described in
previous work.35,39,40,58 Translational and orientational
springs are used, with a maximum value~for translational
and orientational springs! lmax515 000 form53 andlmax

570 000 form55 ~note that the units arekBT/s2 for the
translational spring andkBT for the orientational spring!. The
free energy calculations were performed atT* 54 using 20
different values ofl in the range 0<l<lmax and, as before,
the length of the runs for the free energy calculations was
40 000 equilibration cycles plus 40 000 averaging cycles. It
is important to mention that the shape of the equilibrium unit
cell at a given density is slightly different from that at close
packing; the free energy calculations were carried out using
the equilibrium unit cell at each density. For the CP1 solid
structure of them53 system, we obtained atT* 54 and
r* 50.369 19 a free energy value ofA/(NkBT)54.573; for
the m55 system atT* 54 andr* 50.233 98 we obtained
A/(NkBT)53.487. Using these states as reference, the free
energies of the solid phases are obtained as functions of den-
sity by thermodynamic integration.

We also carried outNPTsimulations for the solid phases
at very low temperature and zero pressure, since an estimate
of the solid densities along the sublimation curve can be
obtained in this way. The solid densities along the sublima-
tion curve are presented in Table VI.

C. Gibbs–Duhem simulations

Once the free energies of the fluid and solid phases are
known at a fixed temperature (T* 54 in this work!, the fluid-
solid equilibria can be determined by equating the pressures

TABLE III. Density r* and residual internal energy~per particle! U* in the
liquid phase as obtained fromNPTMonte Carlo simulations at zero pressure
for linear rigid LJ chains withm53 andm55.

m T* r* U*

3 1.50 0.2324~16! 212.39~10!
3 1.45 0.2378~16! 212.76~10!
3 1.40 0.2437~18! 213.17~12!
3 1.35 0.2487~16! 213.52~10!
3 1.30 0.2549~13! 213.93~9!
3 1.25 0.2597~14! 214.32~10!
3 1.20 0.2653~17! 214.74~12!
3 1.15 0.2708~13! 215.16~10!
3 1.10 0.2755~13! 215.53~10!
3 1.05 0.2808~10! 215.94~7!

5 2.10 0.1178~16! 216.3~2!
5 2.05 0.1217~15! 217.0~3!
5 2.00 0.1276~15! 218.1~2!
5 1.95 0.1311~14! 218.7~2!
5 1.90 0.1366~11! 219.7~2!
5 1.85 0.1397~11! 220.31~18!
5 1.80 0.1505~13! 222.56~3!

TABLE IV. NPTMonte Carlo simulation results for the CP1 solid phase of
linear rigid LJ chains atT* 54 with m53 and 5.

m r* P* U*

3 0.46938 80 24.95
3 0.44783 60 29.63
3 0.41921 40 213.73
3 0.39952 30 215.31
3 0.37046 20 216.14

5 0.27529 60 218.23
5 0.26019 40 225.46
5 0.23777 20 230.92
5 0.20857 8 230.47
5 0.20138 6 229.89

TABLE V. NPT Monte Carlo simulation results for the fluid phase atT*
54 for linear rigid LJ chains.

m r* P* U*

3 0.00503 0.02 20.28
3 0.04836 0.2 22.11
3 0.14235 1 26.19
3 0.20780 3 29.09
3 0.25890 7 210.87
3 0.28815 11 211.43
3 0.30883 15 211.45
3 0.32915 20 211.23
3 0.35900 30 210.13
3 0.37035 35 29.21

5 0.00509 0.02 20.80
5 0.02060 0.08 22.60
5 0.06905 0.4 28.23
5 0.09187 0.8 211.08
5 0.13418 3 216.55
5 0.14516 4 217.99
5 0.15385 5 219.08
5 0.16719 7 220.60
5 0.17749 9 221.64
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and chemical potentials of both phases. The results of the
fluid-solid equilibrium atT* 54 for the linear rigid 3CLJ
and 5CLJ systems are reported in Table VII. In order to
obtain the complete fluid-solid coexistence curve in a range
of temperatures, the Gibbs–Duhem integration technique can
be used. For each chain length studied, initial configurations
for the liquid and solid phases are prepared at the equilib-
rium conditions. In the case of them53 system,N5256
molecules are used in the liquid phase, andN5300 ~three
layers of 100 molecules each! are used for the solid. In the
case of them55 system,N5256 molecules are used for the
liquid and N5288 ~two layers of 144 molecules! for the
solid.

The Gibbs–Duhem method is implemented carrying out
isotropicNPTsimulations for the fluid phase, and nonisotro-
pic NPT simulations for the ordered solid structure, and us-
ing a modified version of the Clausius equation~see also Ref.
40!, which can be written as

S d ln P

db D52
Dh

bPDv
~6!

whereb51/T, andDh andDv are the enthalpy and volume
differences per particle between the fluid and solid phases,
respectively. The integration of this equation requires an ini-
tial coexistence point~here, the fluid-solid equilibrium re-
sults atT* 54 are used; see Table VII!, and a simple trap-
ezoidal rule can then be used with a stepDb. Details of the
integration technique are similar to those reported
previously.40 As in our previous work,40 the lengths of the
runs used to determine the coexistence pressure for a new
temperature were 5000 equilibration cycles and 5000 aver-
aging cycles. Once the coexistence pressure for a new tem-
perature is determined, runs of 30 000130 000 cycles are
used to determine the equilibrium properties at coexistence.

We have typically used a stepDb50.02 in the integration.
The algorithm was checked by implementing this Gibbs–
Duhem integration scheme to determine the fluid-solid equi-
librium properties of a LJ monomer system, and the results
were found to be in good agreement with those of other
works.62,63The same algorithm was used in a previous work
to study the solid-fluid equilibrium of two-center Lennard-
Jones~2CLJ! molecules.40

III. RESULTS

In this work we consider model chain molecules built
from tangent spherical Lennard-Jones segments in order to
investigate the effect of molecular flexibility on the phase
behavior of these systems. We examine the global phase be-
havior, including solid-fluid as well as vapor-liquid transi-
tions. We consider at this stage two limiting cases: freely
jointed chains and linear rigid chains.

Although it is commonly assumed that molecular flex-
ibility has little effect in terms of the fluid phase behavior,
recent work has questioned this.1 Hence, we start by consid-
ering the effect of flexibility on the fluid phase transitions. In
Fig. 1~a! the T* -r* phase diagrams for model systems of
chains with three tangent LJ segments are presented. Com-
puter simulations of the fully flexible 3CLJ system were car-
ried out previously by Blas and Vega;23,53 they report a criti-
cal point atT* 52.06 andr* 50.088. Here, we have carried
out GEMC simulations for the corresponding rigid system
~see the previous section for details of the simulations!; the
critical point in this case is found to beTc* 52.08160.016,
Pc* 50.06060.017, andrc* 50.08960.004. A comparison
between the two simulation studies suggests a slightly higher
critical temperature value for the rigid system, although this
is difficult to confirm given the~relatively! large error asso-
ciated with our estimation of the critical temperature from
computer simulations. Away from the critical point, little dif-
ference is observed for the coexistence densities of the two
models. As we will see later, the effect of flexibility is more
noticeable for larger chains. In Fig. 1~a! the result of a cal-
culation with the TPT1 of Wertheim for Lennard-Jones
chains22,23is also presented for comparison. The theory gives
a very good description of the phase behavior of the system
for the entire phase envelope, although larger deviations are
seen in the region close to the critical point, as expected from
any classical equation of state.

In Fig. 1~b! theT* -r* phase diagram for LJ chain mol-
ecules withm55 tangent segments is presented. We ob-
tained the phase envelope for linear rigid molecules using
GEMC simulations~see the previous section!, and find the
critical conditions atTc* 52.4960.06, Pc* 50.03460.012,
andrc* 50.04660.009. Unfortunately, no simulation data are
available for the flexible model. As comparison we have in-
cluded in the figure the vapor-liquid envelope obtained with
the TPT1 of Wertheim. Blas and Vega53 showed that the
approach provides an excellent description of the phase be-
havior of flexible LJ chain molecules. Assuming that the the-
oretical calculations represent the phase behavior of the flex-
ible model in the case ofm55, we can conclude that a
widening of theT* -r* envelope is seen as a result of an

TABLE VI. Zero-pressure densitiesr* of linear rigid LJ chains in the CP1
solid phase as obtained fromNPTMonte Carlo simulations form53 and 5.

m T* r*

3 1.05 0.3411
3 1.00 0.3433
3 0.95 0.3452
3 0.90 0.3473
3 0.85 0.3493
3 0.80 0.3512

5 2.05 0.1999
5 2.00 0.2006
5 1.95 0.2017
5 1.90 0.2025
5 1.85 0.2035
5 1.80 0.2044

TABLE VII. Coexistence densities, pressures, and chemical potentials at
T* 54 used as starting states for the Gibbs–Duhem calculations.

m T* P* r l* rs* m/(kBT)

3 4 35.108 0.3699 0.4102 27.75
5 4 6.580 0.165 0.203 9.76
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increased stiffness in the chain. The phase diagram in the
P* -T* projection is presented in Fig. 2. The vapor pressure
curves for the 3CLJ and 5CLJ systems are shown. The simu-
lations carried out in this work for the linear rigid models are
compared with calculations using the TPT1 approach of Wer-
theim, which can be considered as accurately representing a
flexible chain model. The flexible and rigid 3CLJ models
exhibit vapor pressure curves which are very close, as could
be expected given theT* -r* diagram of Fig. 1~a!. In the
case of the 5CLJ systems, a slight difference in vapor pres-
sure is noted between the flexible and rigid systems. The
results presented in Figs. 1 and 2 seem to suggest that, while
little difference is observed in the equations of state of flex-
ible and rigid chains of tangent hard spherical segments,17,18

a noticeable difference in the vapor-liquid equilibrium is
seen when attractive interactions are also involved.

The simulation data for flexible and rigid models for LJ

chains withm53 @see Fig. 1~a!# suggest an increase of the
critical temperature with increased stiffness. Unfortunately,
the comparison presented in Fig. 1~b! cannot confirm this
tendency to increase the critical point as the theory does not
provide the correct universal critical behavior. In order to
examine the effect of flexibility on the vapor-liquid coexist-
ence in terms of the critical temperature it is useful to con-
struct a Schultz–Flory64 diagram; this is presented in Fig. 3.
In this representation a linear relation is obtained between
the inverse critical temperature and a function of the number
of beads in the model chain. We have used data from the
literature for the critical temperatures of the fully flexible
chains.23,53,55,56As can be seen in Fig. 3, the critical tempera-
ture of linear rigid chains withm53 and 5 seems to be
higher than that of fully flexible chains. One may speculate
on the behavior of both systems for infinitely long chains.

FIG. 1. ~a! Vapor-liquid coexistence curve (T* -r* representation! for 3CLJ
model systems with tangent segments from computer simulation~symbols!
and predictions from Wertheim’s TPT1~curve!. The open squares corre-
spond to the Gibbs ensemble Monte Carlo simulation results obtained in this
work for the linear rigid model; the open circle indicates the critical point
estimated from the simulation results as described in the main text. The open
triangles correspond to the liquid densities obtained in this work usingNPT
Monte Carlo simulations at zero pressure. The closed triangles~Ref. 53! and
asterisks~Ref. 23! indicate the Gibbs ensemble data of Blas and Vega for
flexible molecules.~b! Vapor-liquid coexistence curve (T* -r* representa-
tion! for 5CLJ model systems with tangent segments from computer simu-
lation ~symbols! and predictions from Wertheim’s TPT1~curve!. The open
squares correspond to the Gibbs ensemble Monte Carlo simulation results
obtained in this work for the linear rigid model; the open circle indicates the
critical point obtained with the scaling relations given in the text. The open
triangles correspond to the zero-pressure NPT calculations. The curve cor-
responds to the TPT1 predictions, which serve as a model for a flexible
system.

FIG. 2. Vapor pressure curve (P* -T* representation! for 3CLJ and 5CLJ
model systems with tangent segments from computer simulation~symbols!
and predictions from Wertheim’s TPT1~curves!. The open squares corre-
spond to the simulations of this work for the rigid 3CLJ system, and the
closed squares to those of the 5CLJ. The curves indicate the pressures as
calculated with Wertheim’s TPT1, which serves as a model for flexible
systems.

FIG. 3. Schultz–Flory diagram comparing the critical temperature of flex-
ible, rigid, and semiflexible models. The open circles correspond to the
critical points of linear rigid chain molecules of LJ tangent segments as
obtained in this work; the closed symbols represent the critical points of
flexible chains of tangent LJ segments as obtained by Escobedo and de
Pablo~Ref. 55! ~squares! and Shenget al. ~Ref. 56! ~triangles!. The crosses
correspond to the critical points obtained by Shenget al. ~Ref. 1! for semi-
flexible chains of tangent LJ segments. The lines are guides to the eye.
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The critical point of an infinitely fully flexible chain of LJ
tangent segments is found to beT* 54.59 ~as suggested by
Shenget al.!. Extrapolating from the GEMC simulations for
linear rigid chains of LJm53 andm55 tangent segments,
the critical temperature of an infinitely long linear rigid chain
is found to beT* 55.27; i.e., of the order of 25% higher than
that of the flexible model. However, our estimate of the criti-
cal temperature of infinitely long linear rigid LJ chains
should be treated with caution since molecules withm53
and 5 are certainly too short to yield linear behavior in a
Schultz–Flory plot. Simulation data for longer linear rigid
chains are needed to establish definite conclusions in this
respect. Our present results seem to suggest that the critical
point of infinitely long linear LJ chains may be higher than
that of the fully flexible model~this is certainly the case for
short chains!, but more work needs to be carried out to
clarify this point completely. It is important to mention also
that Shenget al. examined the critical temperature of semi-
flexible model molecules formed by tangent LJ segments. In
their model the bond angle was fixed to the tetrahedral value,
and a torsional potential was introduced. They showed that
such a nonflexible model yields a critical temperature lower
than that of the fully flexible case. In this work we have
found the opposite~i.e., a higher critical temperature for the
linear rigid model! in comparing to the fully flexible model.
This seems to indicate that the way in which chain stiffness
is incorporated can affect the critical properties and chemical
details of the model~the bond angle in our work is 180° as
compared to 109.5° used by Shenget al.!. Although, as sug-
gested earlier, it may turn out that the linear rigid chains
considered here are too short for the Schultz–Flory plot to be
valid. For short chains, the critical temperature of linear rigid
chains seems to be lower than that of fully flexible chains.
For long chains, we have only an indication that the same
may be true, and further work is needed in this respect. As a
conclusion of this part of the work, it seems clear that flex-

ibility has a non-negligible effect on the vapor-liquid phase
behavior of chains with attractive interactions, and that a
number of issues are yet to be resolved.

Let us now turn our attention to the solid-fluid equilibria.
In previous work,39 an extension of the TPT1 of Wertheim
was proposed which can be used to model the solid phases of
fully flexible chain molecules of LJ tangent segments. The
approach provides an excellent description of the global
phase behavior of the 2CLJ system,40 and, although the
phase behavior of longer flexible chains has not yet been
compared with computer simulation data, it is useful to re-
view here the main findings of the predicted phase behavior
of fully flexible LJ chains.39 The most striking feature is the
existence of an enormous fluid range~in the limit of infi-
nitely long chains the ratioTt /Tc is 0.14!. This is due to the
fact that the critical temperature of chain molecules increases
for increasing chain length, whereas the calculated triple-
point temperature remains practically constant; in fact it is
seen to decrease slightly for increasing chain length. The
stable solid structure for flexible chains of tangent spherical
segments is the so-called disordered solid,33,34 a solid struc-
ture in which the spherical segments are arranged in a close
packed fcc lattice with no long-range orientational order be-
tween bond vectors. The stable solid structure of a system of
rigid chains, however, corresponds to an ordered arrange-
ment of layers with the molecular axes of all the molecules
in a layer pointing in the same direction~i.e., the CP1 struc-
ture!. Since the equilibrium solid structure is different for
both models, and since the Hamiltonian of both systems is
certainly different, one may expect important differences in
the fluid-solid equilibrium of both systems.

We have used the Gibbs–Duhem integration technique
to obtain the fluid-solid coexistence curve in a range of tem-
peratures~Tables VIII and IX! for linear rigid LJ chain mol-
ecules. At low temperatures the solid densities along the sub-
limation curve can be estimated from the zero-pressure

TABLE VIII. Fluid-solid coexistence properties obtained using the Gibbs–Duhem integration scheme for linear rigid LJ chain molecules of bond length
L* 51 and chain lengthm53. The initial equilibrium point for the Gibbs–Duhem integration was a state atT* 54 andP* 535.108.r f* andrs* are the fluid
and solid densities at fluid-solid coexistence, respectively.

T* P* r f* rs* T* P* r f* rs*

4.0000 35.1080 0.3711 0.4102 1.5873 5.1280 0.3112 0.3576
3.7037 30.9665 0.3665 0.4051 1.5385 4.6330 0.3091 0.3561
3.4483 27.4979 0.3606 0.4004 1.4925 4.1736 0.3080 0.3550
3.2258 24.5524 0.3556 0.3963 1.4493 3.7490 0.3065 0.3538
3.0303 22.0125 0.3526 0.3921 1.4085 3.3523 0.3044 0.3525
2.8571 19.7763 0.3500 0.3891 1.3699 2.9813 0.3024 0.3512
2.7027 17.8482 0.3442 0.3855 1.3333 2.6343 0.3012 0.3501
2.5641 16.1452 0.3414 0.3825 1.2987 2.3074 0.2998 0.3493
2.4390 14.6258 0.3387 0.3795 1.2658 2.0034 0.2978 0.3479
2.3256 13.2777 0.3356 0.3770 1.2346 1.7175 0.2940 0.3472
2.2222 12.0702 0.3320 0.3743 1.2048 1.4498 0.2936 0.3463
2.1277 10.9827 0.3305 0.3723 1.1765 1.1965 0.2912 0.3455
2.0408 10.0020 0.3268 0.3697 1.1494 0.9587 0.2878 0.3448
1.9608 9.1088 0.3239 0.3677 1.1236 0.7329 0.2890 0.3441
1.8868 8.2980 0.3231 0.3658 1.0989 0.5202 0.2874 0.3434
1.8182 7.5524 0.3205 0.3639 1.0753 0.3184 0.2849 0.3426
1.7544 6.8717 0.3183 0.3622 1.0526 0.1279 0.2826 0.3421
1.6949 6.2416 0.3166 0.3606 1.0309 0.0011 0.2839 0.3419
1.6393 5.6624 0.3128 0.3592
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simulations presented previously~Table VI!. The global
phase diagrams obtained from simulation are presented in
Figs. 4 (T* -r* projection! and 5 (P* -T* projection!. The
triple-point temperature can be estimated from the simulation

results by extrapolating the fluid-solid coexistence tempera-
tures to zero pressure~i.e., the vapor-liquid-solid triple-point
pressure is expected to be very small!. Conversely, it can also
be determined by finding the temperature at which the den-
sity of the fluid at zero pressure becomes identical to that of
the fluid in the fluid-solid coexistence curve. The triple-point
temperatures and densities for the linear rigid 3CLJ system
are Tt* 51.040, r l* 50.281, andrs* 50.342. For the linear
rigid 5CLJ system these areTt* 52.050,r l* 50.122, andrs*
50.199. In a previous work the triple point of the 2CLJ
system was found40 to be Tt* 50.650, r l* 50.462, andrs*
50.515 ~note that for the 2CLJ the stable solid structure at
the triple point is a disordered one!. In contrast with the
phase behavior of flexible chains, a clear stabilization of the
solid phases results from increasing chain lengths in these
rigid systems. The triple-point temperature increases dra-
matically, faster, in fact, than the increase seen for the critical
point. As a result, the region of vapor-liquid coexistence de-
creases. TheTt* /Tc* ratio is 0.50 for the chain with three
segments, while it is 0.82 for the five-segment chain. By
comparison, the fluid range of flexible molecules of similar
chain lengths, as predicted by our theoretical approach,39 is
of the order of 0.30. Another indication of the stabilization of
the solid phases is the shift toward lower densities in the
fluid-solid transition@see especially Fig. 4~b!#, and the wid-
ening of the density gap. These results are in agreement with

FIG. 4. Global phase diagram in~a! T* -r* and ~b! T* -rs* ~where rs*
5r* m) representations for linear rigid chain molecules of three and five
tangent LJ segments as obtained from the simulations of this work. The
open symbols correspond to the 3CLJ system and the closed symbols to the
5CLJ system. The squares correspond to the results of GEMC calculations,
the triangles to theNPTcalculations of the liquid phase at zero pressure, the
circles to the solid-fluid coexistence densities obtained with Gibbs–Duhem
calculations, and the asterisks and crosses to the solid densities obtained
with NPT calculations at zero pressure.

FIG. 5. Global phase diagram inP* -T* representation for linear rigid chain
molecules of three and five tangent LJ segments as obtained from the simu-
lations of this work. See Fig. 4 for details of the symbols.~b! shows the
P* -T* projection at low pressures~the lines are guides to the eyes!.

TABLE IX. Fluid-solid coexistence properties obtained using the Gibbs–
Duhem integration scheme for linear rigid LJ chain molecules of bond
lengthL* 51 and chain lengthm55. The initial equilibrium point for the
Gibbs–Duhem integration was a state atT* 54 andP* 56.58.r f* andrs*
are the fluid and solid densities at fluid-solid coexistence, respectively.

T* P* r f* rs*

4 6.5800 0.1648 0.2001
3.7037 5.4647 0.1638 0.1994
3.4483 4.5300 0.1615 0.1996
3.2258 3.7296 0.1571 0.1979
3.0303 3.0531 0.1564 0.1964
2.8571 2.4625 0.1516 0.1982
2.7027 1.9504 0.1473 0.1954
2.5641 1.5104 0.1475 0.1982
2.4390 1.1156 0.1437 0.1989
2.3256 0.7697 0.1384 0.1987
2.2222 0.4634 0.1333 0.1990
2.1276 0.1976 0.1278 0.1993
2.0408 0.0067 0.1232 0.1996
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the simulations of Polson and Frenkel.36 In Fig. 5 theP* -T*
projections of the phase diagrams as obtained from simula-
tion are shown for the 3CLJ and 5CLJ systems. At a fixed
pressure the solid-liquid melting temperature is displaced to
higher temperatures for increasing chain length. As before,
this corresponds to a stabilization of the solid phase. In Fig.
5~b! the shift of the triple-point temperatures can be better
observed. A comparison of the phase behavior of linear and
flexible chains can be seen in Fig. 6. The phase behavior of
the flexible model is obtained with the TPT1 approach pre-
sented in earlier work.39 It can be clearly seen in Fig. 6 that
in the case of the flexible model the predicted triple-point
temperature remains practically constant for increasing chain
lengths; this leads to the large fluid range seen in the flexible
model systems. Using the distance fluctuation criterion for
melting and computer simulations, Zhouet al.31,32noted that
the results obtained with clusters of square-well segments
and isolated square-well homopolymers are very similar, and
suggest that chain connectivity does not affect the solid-
liquid equilibrium in the case of freely jointed chains; our
TPT1 model seems to lead to the same conclusion. In the
rigid systems, however, the marked stabilization of the solid
phases results in an increase of the triple-point temperatures
and the shrinkage of the fluid range.

It is encouraging to see that the trends highlighted here

for the rigid chains confirm the predictions of our theoretical
calculations for chains of tangent hard segments interacting
via attractive dispersion interactions treated at the mean-field
level of van der Waals.48 In the former work a simple exten-
sion of Wertheim’s theory is coupled with a scaling argument
to take into account the fewer degrees of freedom of a rigid
chain ~as compared to a flexible chain!. As regards the
theory, the stabilization of the solid phase with respect to the
fluid is explained in terms of this loss of degrees of freedom.
It was also suggested that, as a result of the marked increase
in the triple-point temperature, the vapor-liquid envelope
would be metastable in systems of long rigid chains with
attractive interactions. An extrapolation of the values of the
Tt* /Tc* ratio as obtained from simulation in our present work
suggests that chains with more than six segments will not
exhibit stable vapor-liquid transitions~see Fig. 7!. In the fig-
ure the ratios corresponding to flexible LJ chains as predicted
by the extension of Wertheim’s theory37 are also shown for
comparison. In the flexible systems, the liquid-vapor enve-
lope not only does not become metastable for any chain
length, but dominates the phase diagram.

A final point should be made before finishing this sec-
tion. As discussed in the Introduction, it has been shown3,4

that linear rigid chain molecules of tangent hard segments
exhibit liquid crystalline phase behavior for chain lengths
equal to or larger than five segments. In particular, Vega
et al.4 have studied the phase behavior of the system with
five tangent segments usingNPTcomputer simulations. Fol-
lowing a compression route, they observed isotropic, nem-
atic, smecticA, and solid phases. The hard system is related
to the behavior of the LJ system at high temperatures~where
the effect of attractions is small!. Therefore, since linear rigid
hard sphere chains form liquid crystals, one may expect that
LJ linear rigid chains may also form liquid crystal phases~at
least at high temperatures!. However, in the simulations per-
formed in this work form55 andT* 54 in the fluid phase
no evidence of liquid crystal phase formation was found. It
remains to be considered if liquid crystal phases will appear
for this model withm55 at higher temperatures. De Miguel

FIG. 6. Global phase diagram in~a! T* -r* and~b! P* -T* representations
for linear rigid chain molecules of three and five tangent LJ segments as
obtained from the simulations of this work and compared with TPT1 calcu-
lations~Ref. 39!. The solid lines correspond to the TPT1 calculations for the
flexible chains and the symbols to the simulation points of the rigid systems.
See Fig. 4 for details of the symbols.

FIG. 7. Sketch of theTt /Tc ratio for varying chain length in model chains
of tangent LJ segments. The open symbols correspond to the ratios for linear
rigid molecules as obtained in this work, and the closed symbols to the
ratios of flexible molecules as obtained with Wertheim’s TPT1 in previous
work ~Ref. 37!. The curves are guides to the eye.
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and Vega29 presented the global phase diagram of a Gay–
Berne model system which includes solid, liquid crystalline,
and fluid phases. In their chosen system a solid-nematic-fluid
triple point is observed at relatively high temperature, and a
second solid-liquid-vapor triple point is observed at low tem-
peratures. We expect that a similar phase diagram may
emerge for the system of linear rigid LJ molecules if high
enough temperatures are studied; we will consider this point
in future work.

IV. CONCLUSIONS

We have determined the global phase behavior~vapor-
liquid and fluid-solid equilibria! of linear rigid chain mol-
ecules of three and five tangent LJ segments using computer
simulations. The vapor-liquid equilibria were determined us-
ing Gibbs ensemble Monte Carlo simulations and isobaric-
isothermal~NPT! calculations at zero pressure. In order to
determine the fluid-solid coexistence densities at a given
temperature, we obtained the free energies of each phase by
thermodynamic integration. For the solid phase, this first re-
quired calculating the free energy at a particular~solid! state
point. The Gibbs–Duhem integration technique was then
used to obtain the solid-fluid transition at various tempera-
tures. Zero-pressureNPT simulations have also been carried
out at very low temperature to determine the coexistence
solid densities along the sublimation curve. We have studied
the effect of flexibility on the phase behavior by comparing
the phase diagrams of flexible and rigid LJ chains.

The vapor-liquid critical conditions obtained in this work
are found to beTc* 52.08160.016,Pc* 50.06060.017, and
rc* 50.08960.004 for the linear rigid 3CLJ system, andTc*
52.4960.06,Pc* 50.03460.012, andrc* 50.04660.009 for
the linear rigid 5CLJ system. In respect to the vapor-liquid
coexistence, we find that flexible and rigid chains of LJ seg-
ments exhibit noticeable differences. This is a rather unex-
pected result, as the equation of state of linear and rigid
chains of tangent hard segments are very similar.18 The criti-
cal temperature of linear rigid LJ chains is found to be higher
than that of flexible chains of corresponding chain length. In
the limit of chains of infinite length, the difference is of
about 25%~assuming the Schultz–Flory plot can be used for
the short chains considered here!.

As far as the fluid-solid phase equilibria are concerned, a
clear stabilization of the solid phase with respect to the fluid
is seen for increasing chain lengths; both the solid and fluid
densities at coexistence~even when expressed in monomer
units! shift toward lower densities for larger molecules. To-
gether with this, a marked increase of the triple-point tem-
perature is observed: the triple-point temperatures and den-
sities for the linear rigid 3CLJ system areTt* 51.040, r l*
50.281, andrs* 50.342, while for the linear rigid 5CLJ sys-
tem these areTt* 52.050,r l* 50.122, andrs* 50.199. As a
result of the stabilization of the solid phase, the fluid range
~given by the ratioTt /Tc) decreases for increasing chain
length, and it is predicted to disappear for chains with more
than six tangent LJ segments. This is in marked contrast with
the phase behavior predicted for systems of flexible LJ
chains of tangent segments.37 In the flexible molecular sys-

tems, the vapor-liquid coexistence was seen to dominate the
phase diagram. To explain this one must take into account
two factors. First, the equilibrium solid structure of fully
flexible and linear rigid chains is completely different. Rigid
linear chains freeze into an ordered arrangement of layers
with all the molecules in a layer pointing in the same direc-
tion, while the stable solid structure of a system of fully
flexible chains of tangent spherical segments is one with no
long-range orientational order of bonds.

Second, the difference of the Hamiltonian does also af-
fect the equation of state in the solid phase. It has been
shown previously that even if a CP1 structure is ‘‘imposed’’
on a fully flexible chain in the solid phase, its equation of
state differs from that of the rigid linear chain41 in the same
CP1 solid structure. Therefore the difference of the Hamil-
tonian affects the equation of state, even if the same solid
structure is considered.

To summarize the content of this paper one may say that
linear rigid LJ chains present a shrinkage of the liquid range,
and that fully flexible LJ chains present a huge liquid range
(Tt /Tc50.14). The behavior of semiflexible molecular sys-
tems ~such asn-alkanes! is expected to lie somewhere be-
tween these two extremes. In future work we plan to con-
sider longer rigid chains and examine the phase behavior in
more detail, analyzing the possibility of liquid crystal forma-
tion in these systems.

Note added in proof.Please note there was a misprint in
Table I of Ref. 39.ai j for i54, j51 should be 69.214 instead
of 68.219 as reported.
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