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ABSTRACT
Despite the importance of ice nucleation, this process has been barely explored at negative pressures. Here, we study homogeneous ice nucle-
ation in stretched water by means of molecular dynamics seeding simulations using the TIP4P/Ice model. We observe that the critical nucleus
size, interfacial free energy, free energy barrier, and nucleation rate barely change between isobars from −2600 to 500 bars when they are
represented as a function of supercooling. This allows us to identify universal empirical expressions for homogeneous ice nucleation in the
pressure range from −2600 to 500 bars. We show that this universal behavior arises from the pressure dependence of the interfacial free
energy, which we compute by means of the mold integration technique, finding a shallow minimum around −2000 bars. Likewise, we show
that the change in the interfacial free energy with pressure is proportional to the excess entropy and the slope of the melting line, exhibiting
in the latter a reentrant behavior also at the same negative pressure. Finally, we estimate the excess internal energy and the excess entropy of
the ice Ih–water interface.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0140814

I. INTRODUCTION

Water crystallization is an essential phase transition in nature
and technology. However, in the cryopreservation of biological
samples,1,2 ice formation can be disastrous. The low temperature
preserves the biological material but causes the water within the
sample to be in a metastable state subject to crystallization.3 Inter-
estingly, by keeping the sample under high pressure, ice nuclei are
less likely to form, keeping water liquid for a longer time.4–6 The
frequency of the nucleation process is mainly determined by the
thermodynamic driving force and the cost of creating the interface
between the emerging nucleus and the metastable liquid. The rea-
son why high pressure slows down the nucleation process is that
the difference in the chemical potential between ice and water, Δμ,
which represents the thermodynamic driving force, barely changes
between isobars as a function of supercooling, whereas the cost of
creating the interface notably increases.7 The interfacial free energy

is the variable that quantifies this cost. At coexistence, through a pla-
nar interface, the interfacial free energy γm differs from the value for
a critical nucleus γ due to the curvature of the surface.8 Nevertheless,
both notably increase at high pressure.7

Homogeneous ice nucleation at standard and high pressure
has been extensively explored.7,9–21 However, ice nucleation in
water under negative pressure, i.e., stretched water, has caught less
attention.22–24 This process is relevant in porous media contain-
ing water solutions25 and also in water transpiration inside plants26

where negative pressure occurs. Creating and maintaining nega-
tive pressure over a sample is non-trivial in experiments.27 This is
because a liquid at negative pressure is metastable.28,29 In general,
this metastability is considered with respect to the vapor phase,30,31

although at certain conditions, it also can be metastable with respect
to ice. Some ingenious approaches to create negative pressure in
metastable water include the use of a Berthelot tube,32 centrifu-
gation,33 and, more recently, the use of acoustic waves.27,31,34 In
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contrast, in computer simulations, it is straightforward to work
under negative pressures.

In this work, we investigate how ice nucleation properties are
affected by negative pressure at different degrees of supercooling. In
fact, we find little effect when pressure changes from strongly nega-
tive to moderately positive. We investigate the role of the interfacial
free energy since it is a key property in determining the phase behav-
ior of water at high pressure.7 We find that the slope of the melting
line is crucial to describe the change with pressure of the inter-
facial free energy, which displays a shallow minimum at negative
pressure. Our study is based on molecular dynamics simulations
with the TIP4P/Ice model,35 which has been extensively used to
describe ice nucleation7,9,12,23 and growth36,37 as well as in super-
cooled water.38,39 In particular, we employ the seeding technique9,40

to study nucleation and the mold integration technique41 to measure
the interfacial free energy at coexistence.

II. SIMULATION METHODS
All simulations have been done with the GROMACS pack-

age (4.6.7-version in double precision) with the TIP4P/Ice water
model. The simulations are performed in the isothermal–isobaric
(NpT) ensemble with a time step of 2 fs using the Noose–Hoover
thermostat42,43 and the Parrinello–Rahman barostat,44 both with a
relaxation time of 0.5 ps. Electrostatic interactions are accounted for
via the particle-mesh-Ewald summation algorithm45 with order 4
and a Fourier spacing of 0.1 nm. The cutoff for the Lennard-Jones
and the Coulombic interactions is set to 0.9 nm, and the long-range
corrections to the Lennard-Jones part of the potential are included
in energy and pressure.

To study nucleation, we use the seeding technique,9,46,47 which
involves the combination of molecular dynamics simulations and
classical nucleation theory (CNT).48,49 This technique is based on the
behavior of a critical nucleus, which has equal probability of grow-
ing and melting when surrounded by the metastable phase at the
critical pressure and temperature. In practice, one inserts a spher-
ical ice Ih seed in metastable water and then keeps track of the
time evolution of the size of the cluster. One can vary T, p, and
the seed size in order to find at which conditions a certain nucleus
size is critical (Nc). Once Nc is known, CNT is used to find the
interfacial free energy γ, the barrier height ΔGc, and the nucle-
ation rate J. Our system sizes ranged between 80 000 and 250 000
water molecules in total. The duration of the trajectories is between
40 and 115 ns.

It is important to note that in the Gibbsian description of inter-
faces, one has two bulk phases separated by a dividing surface.
However, there is some arbitrariness in the location of the divid-
ing surface, which also affects the interfacial free energy γ when the
interface has a curvature.50–53 Within the CNT framework, the rele-
vant dividing surface is the surface of tension.54,55 Besides, the accu-
racy of the seeding technique relies on the right selection of the order
parameter given that Nc is very sensitive to that choice. In order
to approximate the number of molecules in the critical nucleus, we
employ an empirical approach that has been successfully applied in
crystal nucleation for a large variety of systems.7,23,40,41,56,57 In this
approach, the averaged Steinhardt bond order parameter,58 q̄6(T, p),
is used in combination with the mislabeling criterion9 to identify ice-
like and water-like molecules. We obtain q̄6(T, p) for each molecule.

The molecules with q̄6(T, p) above a certain threshold q̄6,t(T, p)
are labeled as ice, whereas those below are labeled as liquid. This
threshold depends weakly on the considered thermodynamic range
covering pressures from−2600 to−1000 bars and temperatures from
250 to 270 K [see the supplementary material in Ref. 23 for the
isothermal change in q̄6,t(T, p)with pressure]. In this work, the value
of the threshold determined by the mislabeling criterion changes
between 0.365 for the highest temperature and pressure to 0.385
for the lowest temperature and pressure. Two molecules labeled as
solid belong to the same solid cluster if their distance is smaller than
3.5 Å. However, due to the intrinsic arbitrariness of the crystallinity
definition and the statistical limitations of the seeding method, it
remains some uncertainty in Nc, which is difficult to estimate.

Once Nc is known, we employ the CNT equations48,49 to deter-
mine other important parameters. The interfacial free energy γ is
given as

γ = (3Ncρ2
ice∣Δμ∣3

32π
)

1/3

, (1)

where Nc is the size of the critical nucleus, ρice is the number density
of ice Ih in the bulk at the metastable conditions at which the nucleus
is critical, and ∣Δμ∣ is known as the driving force to nucleation,
i.e., the difference in chemical potential between the liquid and ice
phases in the bulk at the conditions that cause the nucleus to be crit-
ical. This property can be obtained by thermodynamic integration
along an isobar,59

∣ Δμ
kBT
∣ = ∣∫

T

Tm

1
kBT′

(Hice

Nice
− Hw

Nw
)dT′∣, (2)

where kB is the Boltzmann constant, Tm is the melting temperature,
and H is the enthalpy, which can be obtained from simulations of
bulk ice Ih and bulk water along the isobar of interest.

Then, the free energy barrier is given as

ΔGc =
16πγ3

3ρ2
ice∣Δμ∣2

= Nc∣Δμ∣
2

, (3)

which allows us to obtain the nucleation rate J, the number of critical
nuclei forming per unit of time and volume. According to CNT, J is
given as

J = ρw

√
∣Δμ∣

6πkBTNc
f + exp(−ΔGc

kBT
), (4)

where f + is the attachment rate that can be approximated through
the expression7,23

f + = 24DN2/3
c

λ2 , (5)

where D is the diffusion coefficient of the metastable liquid and λ
is a characteristic length, the typical distance that a water molecule
covers in order to attach into the nucleus, whose value is ∼3.8 Å for
water.7,23

To find the ice Ih–water interfacial free energy at coexistence
for a planar interface, γm, we use the mold integration technique,41
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which consists in computing the reversible work W that is nec-
essary to form a crystal slab within a liquid at coexistence. This
work is related to the interfacial free energy at coexistence, γm, by
W = 2Aγm, where A is the interfacial area, and the number 2
accounts for the two interfaces of the slab. The slab formation is
induced by switching on an attractive interaction between the mold
of potential energy wells and the particles of the initial liquid. The
wells are arranged in the equilibrium positions of the oxygen atoms
in the ice facet under investigation at coexistence conditions, i.e., for
temperatures and pressures located along the ice Ih–water equilib-
rium line for the TIP4P/Ice water model. First, one has to obtain
γrw , which is given as

γrw =
1

2A
(ϵwNw − ∫

ϵw

0
⟨N(ϵ)⟩dϵ), (6)

where rw indicates the radius of the potential wells and ϵ is their
energy (with maximum depth equal to ϵw). Nw is the number
of wells in the mold, and ⟨N(ϵ)⟩ is the average number of occu-
pied wells at a given potential depth ϵ. The integration needs to be
reversible. To ensure this, thermodynamic integration is performed
for wells whose radius is larger than a certain value r0

w . At r0
w ,

the slab is fully formed and the stability no longer depends on the

mold–liquid interactions, hence leading to potentially irreversible
ice growth. However, since this is the radius that recovers the
actual value of γm, thermodynamic integration is repeated for several
values of rw > r0

w and then γrw is extrapolated to its value at r0
w giv-

ing γm. For further details on the implementation of this technique
we refer the reader to Refs. 41 and 60.

III. RESULTS
A. Universality in ice nucleation variables at negative
and moderate pressure

First, we study nucleation along the isobars of −2600, −2000,
and −1000 bars by means of the seeding approach. For pressures
below −3000 bars, we observed spontaneous cavitation occurring
within the timescale of the trajectories needed in the seeding
method. We obtain the critical nucleus size Nc, the driving force
to nucleation ∣Δμ∣, the interfacial free energy γ, the free energy bar-
rier to nucleation ΔGc, and the nucleation rate J. These results are
presented in Table I. As can be seen, even though the pressure signif-
icantly differs, the results are surprisingly similar for nuclei of similar
size for equivalent supercoolings. This behavior is considerably dif-
ferent from what has been found when comparing the nucleation

TABLE I. Seeding results in tabular form. Nc is the critical nucleus size, T and p are the thermodynamic conditions that make such nucleus size to be critical, and ΔT is the
supercooling, Tm − T . The densities of water ρw and ice ρice are also shown, as well as the interfacial free energy of the critical nucleus γ, the barrier height ΔGc , and the
base-10 logarithm of the nucleation rate log10(J).

Nc T (K) ΔT (K) p (bars) ρw (g/cm3) ρice (g/cm3) ∣Δμ∣ (kJ/mol) γ (mJ/m2) ΔGc (kJ/mol) log10 (J[m−3 s−1])

1650 255 23 −1000 0.9208 0.8999 0.367 21.62 303 −24
7450 264 14 −1000 0.9285 0.8985 0.237 23.03 883 −136
1750 255 25 −2000 0.8855 0.8916 0.367 21.87 321 −28
7600 266 14 −2000 0.8876 0.8894 0.224 21.74 851 −128
1950 255 24 −2600 0.8674 0.8866 0.340 20.89 332 −30

FIG. 1. (a) Critical nucleus size and (b) free energy barrier to undergo nucleation against supercooling. The same legend applies in both panels. Numerical details can be
seen in Table I. The color indicates the pressure, whereas solid symbols correspond to simulations performed in this work, and empty symbols correspond to data obtained
from previous work as indicated in the legend. For the same pressure but different work, we use different symbols. The lines are power law fits to points sharing the same
pressure independently on the work in which they were obtained. In panel (a), the exponents of the power law fits are −2.8 along −1000 bars and −2.9 along −2000 bars,
whereas along 1 bar, the exponent is −3.4. In panel (b), the exponents of the power law fits are −2.4 along −1000 bars and −2.1 along −2000 bars, whereas along 1 bar,
the exponent is −1.9.
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scenario of normal vs high pressure (i.e., 1 vs 2000 bars; Ref. 7),
where the increase in pressure brings down the ice nucleation rate.

To further understand this behavior, we connect our results
with those from previous studies where nucleation had been studied
for the TIP4P/Ice model at different pressures including negative,
moderate, and high pressure states.7,23 In Fig. 1(a), we show the crit-
ical nucleus size as a function of supercooling for several isobars.
We provide results at moderate supercoolings at −2600, −2000, and
−1000 bars. For these same isobars and for the 1 bar isobar, we
show the values reported in Ref. 23. For the 1 bar isobar, we also
show the values given in Ref. 7, which also provides the values at
the 2000 bars isobar. As can be seen, only the points correspond-
ing to the 2000 bars isobar7 exhibit a different trend. The isobars at
−2600,−2000, and−1000 bars from this work as well as from Ref. 23,
and the 1 bar isobar from both Refs. 7 and 23 follow approximately
the same curve. Notice that even a point at 450 bars reported in
Ref. 23 was included being in agreement with this group of isobars.

In fact, as shown in Fig. 1(b), pressure hardly affects the nucleation
free energy barrier as a function of supercooling from −2600 to
450 bars.

Our results from Fig. 1 suggest that a similar nucleation behav-
ior as a function of supercooling may take place from −2600 to
450 bars. That is a strikingly different behavior to the one observed
when increasing pressure to 2000 bars. Thus, we propose univer-
sal empirical expressions for the variation of different homogeneous
ice nucleation properties with the supercooling independently of the
pressure as long as it lies within this regime. Nevertheless, we first
need to confirm that what was observed for Nc and ΔGc also applies
to J. In Fig. 2, we show again (a) Nc and (b) ΔGc as well as (c) γ
and (d) log10J. This time, for each magnitude, we include a com-
mon fit to data from moderately positive to deeply negative pressure
(including our own data and those from Refs. 7 and 23) along a sep-
arate fit at high pressure.7 In Fig. 2(c), we show γ which exhibits
higher variance. Finally, in Fig. 2(d), we show how very different

FIG. 2. (a) Critical nucleus size, (b) nucleation free energy barrier, (c) interfacial free energy, and (d) log10J against supercooling. The same legend applies to all panels.
The color indicates the pressure regime according to the legend. Points obtained in this work are shown as solid symbols, whereas results from Refs. 7 and 23 as
empty symbols. Black solid symbols are restricted to pressures between −2600 and −1000 bars, whereas black empty symbols cover from −2600 up to 450 bars. Cyan
empty symbols correspond to 2000 bars. For each magnitude, a common fit to our data and those of Refs. 7 and 23 is included. For panels (a) and (b), a power law
fit is used as given by Eqs. (7) and (8), respectively, whereas for panel (c), we use a linear fit [Eq. (9)] and for panel (d), we use a CNT-based fit. The CNT-based fit
consists in using Eq. (4), taking 1036 m−3 s−1 as the prefactor (ρw

√

∣Δμ∣/(6πkBTNc) f+), and using Eq. (8) for ΔGc . HNL in panel (d) is the iso-nucleation line of
log10(J[m−3 s−1

]) = 15.

J. Chem. Phys. 158, 124503 (2023); doi: 10.1063/5.0140814 158, 124503-4

© Author(s) 2023

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

pressures (from largely negative to moderately positive) lead to
approximately the same nucleation rate J as a function of supercool-
ing, ΔT = Tm − T. The values of Tm are given in Table II. Hence, we
can use the respective common fit as universal empirical expressions
to describe the change with supercooling within this broad range of
pressures.

For Nc, we obtain

Nc(ΔT) = 1.2 ⋅ 107 ⋅ (ΔT
T0
)
−2.8

, (7)

and for ΔGc (in kJ/mol), we obtain

ΔGc(ΔT) = 2.3 ⋅ 105 ⋅ (ΔT
T0
)
−2.1

, (8)

where T0 equals 1 K for correctness of units. The uncertainty in the
exponents of both Eqs. (7) and (8) after combining all data in the
pressure regime below 500 bars is roughly 5%. This is consistent with
the significant uncertainty in the critical nucleus size and with the
exponents obtained from power law fits to each isobar alone, which
are shown in the caption of Fig. 1 only with the case of Nc at 1 bar
differing slightly.

For γ in mJ/m2, we obtain

γ(ΔT) = 26.6 − 0.174 ⋅ ΔT, (9)

and, finally, for J in m−3 s−1, one should use Eq. (4) along with Eq. (8)
(after converting into in kBT units), and 1036 m−3 s−1 as the prefactor
(ρw
√
∣Δμ∣/(6πkBTNc) f +).

The results shown in Fig. 2 have interesting consequences. First,
taking into account that Nc and γ [panels (a) and (c), respectively]
are roughly independent of p when it goes from largely nega-
tive to moderately positive pressures, the isobaric Tolman length,
which determines the change in γ with the inverse of the radius of
curvature of the cluster along an isobar,8,61,62 is roughly constant
too and equal to 0.24(5) nm, where the parentheses indicates uncer-
tainty in the last digit. This result is in agreement with previous
work.56 Second, in panel (d), one can see that from strongly negative
to moderately positive pressure we obtain the same nucleation rate
with respect to the supercooling, which means that the homoge-
neous nucleation line (HNL) should be at a constant distance to
the melting line in this regime as predicted recently for this water
model23 and for the mW model63 in Ref. 24. In Fig. 3, we show the
estimates for the model7,23 assuming that the HNL corresponds to an
iso-nucleation rate of log10 J/(m−3 s−1) = 15, and we compare it to the

TABLE II. Interfacial free energy γm at different T − p points of the coexistence line
for the basal plane. Value at 1 bar is from Ref. 41.

pm (bars) Tm (K) γm (mJ/m2)

−2600 279.0 27.1(1.5)
−2000 280.0 26.5(1.5)
−1000 278.0 25.6(1.5)
1 270.0 27.2 (0.8)
1000 260.0 29.0(1.5)
2000 246.5 37.2(1.5)

FIG. 3. In solid lines, the coexistence lines Tm, where blue is experimental22

and red is for the TIP4P/Ice.23 The dashed blue line corresponds to the experi-
mental HNL.4 The empty red symbols correspond to simulation estimates for the
TIP4P/Ice of the HNL for log10 J/(m−3 s−1)= 15 (the dashed red line is a guide con-
necting these points). The turning point of the melting curve of TIP4P/Ice occurs
at 280 K and −2000 bars.

experimental HNL.4 In addition, the coexistence lines of the model23

and the experimental one22 are presented showing how the distance
between the coexistence line and the HNL is roughly constant until
pressure increases enough such that the required supercooling to
reach log10 J = 15 becomes larger. However, even though this result
might be useful, a physical explanation is still missing. In order to
answer this question, we look at the pressure-induced deceleration
of ice nucleation. In 2016, Espinosa et al.7 showed that the origin
of this phenomenon arises from the increase with pressure of the
interfacial free energy both at coexistence γm and for nucleation
(γ at a given supercooling ΔT), while the difference in chemical
potential Δμ does not change so much with ΔT. Thus, one needs
a larger ΔT to obtain the same J at high pressure. In this work, we
observe approximately the same J as a function of ΔT from strongly
negative to moderately positive pressure.

Since we obtain roughly the same γ as a function of ΔT at
different negative pressures, we also expect γm to barely change
with p. The term γm refers to a planar interface between ice and
water at certain conditions along the coexistence line, whereas the
term γ refers to a curved interface between a critical nucleus of ice
and water at a certain supercooling ΔT along an isobar. In both
cases, thermodynamic equilibrium holds. However, when the inter-
face is planar, then the pressure is equal in both phases, while in
a spherical interface, the pressure changes between phases follow-
ing the Young–Laplace equation. Then, we compute γm for several
points. In addition to the negative pressure isobars, we compute two
points at 1000 and 2000 bars. We study only the basal plane as we
do not expect severe anisotropy (as much as ∼10%) with the pris-
matic ones.41,64–66 For example, the change along coexistence of this
anisotropy has been studied in detail for a Lennard-Jones system by
Laird et al.67 There, it was shown that the relative difference in the
interfacial free energy among planes is almost constant with pres-
sure. Furthermore, the anisotropy at 1 bar is comparable between
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water models41 and also in salty water where salt plays a similar role
to pressure in terms of disruption of the hydrogen bond network.68

The results of γm are presented in Table II and in Fig. 4. As shown,
γm barely changes along the coexistence line when p varies from
strongly negative to moderately positive. Interestingly, γm displays
a shallow minimum. Thus, as long as Δμ does not change signif-
icantly with ΔT at negative p, one can explain why in Fig. 2, Nc,
ΔGc, γ, and J seem to be independent of p against the supercooling
when p is negative or moderate. In order to confirm this, we evaluate
the effect of p on Δμ as a function of supercooling ΔT by compar-
ing with the value at 1 bar. To do so, we compute (Δμp − Δμ1)/Δμ1
for the different isobars p = −2600, −2000, −1000, 1, and 2000 bars
as a function of ΔT (for 1 and 2000 bars, we use the data from
Ref. 7). As can be seen in Fig. 5(a), the 2000 bars isobar is very sim-
ilar to the −1000 bars one in terms of Δμ with respect to Δμ1, and
the −2600 bars is the one that deviates the most with up to 18%. This
deviation is, however, compensated by γ, which is rather dispersed
and, in the end, Nc, ΔGc, and J are very well-described by universal
empirical expressions. Moreover, in Fig. 5(b), we show ΔG obtained
as Nc∣Δμ∣/2 by setting Nc to the common fit of Eq. (7) and chang-
ing Δμ to that of the different isobars. As can be seen, from strongly
negative to moderately positive pressure, the change in Δμ does not
significantly affect the free energy barrier for isobars between −2600
and 450 bars. Thus, we confirm that the universality in nucleation
properties presented in Figs. 1 and 2 is the consequence of the small
variation with p of the difference in chemical potential Δμ as well
as in the interfacial free energy both at coexistence γm and for the
nucleation γ at a given ΔT.

Regarding the nucleation rate J, one may also consider the effect
of water kinetics in order to confirm previous conclusions. It is true
that the thermodynamic contribution of ΔGc has a larger effect than
the kinetic prefactor, as can be seen in Eq. (4), since the first is in
the exponential, while the latter affects the nucleation rate linearly.
In fact, the diffusion coefficient D of supercooled water can change
by orders of magnitude along isotherms.69 In Fig. 6, we show D as a
function of ΔT along different isobars from −2600 up to 1400 bars.
As can be seen between −1000 and 1400 bars, the change is little for

FIG. 4. Ice Ih–water interfacial free energy at coexistence for the basal plane for
the TIP4P/Ice model.

FIG. 5. (a) Deviation in Δμ at different isobars (−2600, −2000, −1000, and 2000
bars) with respect to the one at 1 bar. (b) In the dashed black (for 1 bar), green (for
−1000 bars), red (for −2000 bars), and blue (for −2600 bars) lines, we present
free energy barriers ΔGc = Nc ⋅ Δμ/2, where Nc(ΔT) is given by the common
fit of Eq. (7), and for Δμ, we use the corresponding values for each isobar. The
solid black line is the common fit for ΔGc proposed in Eq. (8), and turquoise is the
fit for 2000 bars from Ref. 7. Through black circles, we show the data in the −2600
bars <p < 450 bars regime, where the solid ones are computed in this work and
the empty ones come from Refs. 7 and 23.

supercoolings below 30 K. Only when the supercooling is larger than
30 K or the pressure is strongly negative, one starts to appreciate the
difference. Furthermore, these differences are only up to one order
of magnitude, which is not much in terms of D considering how
different the thermodynamic states are in pressure and temperature.
In fact, this variation is not significant in terms of the nucleation rate
because J can vary tens of orders of magnitude within a range of a
few kelvin of supercooling. Therefore, this result is compatible with
the universality found in J.
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FIG. 6. Diffusion coefficient of liquid water as a function of supercooling along
different isobars. Notice that even though the diffusion coefficient of water at 1400
bar is larger than that at 1 bar along an isotherm,69 when plotted along isobars as
a function of the supercooling then it is smaller up to 30 K.

B. Interfacial free energy and melting line of the ice
Ih–water interface

We now understand the small variability with pressure of the
nucleation properties as a function of supercooling at negative and
moderate pressure. In order to understand why γm displays a shal-
low minimum, we use the thermodynamic formalism of Gibbs for
interfaces.51,70 The interfacial Gibbs–Duhem relation is given by

dγm = −Γdμm − ηγdTm, (10)

where Γ = Nγ/A is the surface excess density, also called adsorp-
tion, and ηγ = Sγ/A is the excess contribution to the entropy. Since
the location of the dividing surface is arbitrary, excess functions
also depend on this choice with the exception of γm. For a pla-
nar interface, γm does not change with the location of the dividing
surface unlike in the case of curved interfaces, where γ does change
with its location.51,53,55 The choice that most simplifies the thermo-
dynamic treatment in our case is the equimolar dividing surface,
usually denoted as the Gibbs dividing surface, where the excess com-
ponents Nγ is zero, and so is Γ (see the Appendix for a general
dividing surface treatment). Hence, we can write

dγm

dTm
= −ηe

γ, (11)

where the superscript e denotes the equimolar dividing surface.
Equation (11) provides us with the temperature dependence of the
interfacial free energy. It is crucial to note that this derivative must
be taken along the coexistence line so that p is not constant. In fact,
we can change Eq. (11) to describe the change of γm with pressure
along the melting line pm as

dγm

dpm
= −ηe

γ
dTm

dpm
. (12)

In our case, Eq. (12) is more convenient due to the reentrant
behavior of the melting curve, i.e., for each Tm, one has two values

of pm, whereas for each pm, there is only one value of Tm (see the
solid red curve in Fig. 3). From Eq. (12), one can see that the change
in γm with pm is determined by the slope of the melting line and
the value of the excess entropy per area at the equimolar dividing
surface, ηe

γ. This means that if there is a reentrant behavior for the
melting point, there must also be a reentrant behavior for γm as
a function of pressure exactly at the same pm because ηe

γ must be
finite. In fact, Bianco et al.23 reported a reentrant behavior in the ice
Ih-liquid coexistence line of TIP4P/Ice, whose turning point
occurred at −2000 bars.

Next, we want to confirm that the maximum in the melting
line Tm(pm) is consistent with the minimum in γm(pm) that we
have obtained from the mold integration technique. Thus, we fit
the data for γm(pm) from mold integration with a quadratic fit with
the constraint of having the vertex at the same pm (−2000 bars) as
the quadratic fit for Tm(pm). The latter, Tm(p) = aTm p2 + bTm p + cTm

has the parameters cTm = 271 K, bTm = −8.5 ⋅ 10−3 K/bar, and aTm

= −2 ⋅ 10−6 K/bar2. In this way, we assume that ηe
γ is constant. The

result is shown in Fig. 7. In the left panel, we show the melt-
ing line with points from the direct coexistence simulations of
Ref. 23 and the quadratic fit. An inset is included zooming in the
region of the maximum of the melting line. On the right panel,
we show the points of γm from mold integration from this work
and Ref. 41 as well as the quadratic fit. As can be seen in the right
panel, the fit is fairly good even though we impose constant ηe

γ and
quadratic fits with the constraint of having the vertex at the same
p. Therefore, assuming that ηe

γ is constant seems to be a reasonable
approximation.

At this level of approximation, ηe
γ is found to be 0.32 mJ/m2

K. Note that ηe
γ > 0 as expected from Eq. (12). For instance, from

1 to 2000 bars, Tm decreases from 270 to 246.5 K, and γm increases
from 27.2 to 37.2 mJ/m2. Therefore, dγm/dpm > 0 and dTm/dpm < 0,

FIG. 7. Left: Melting temperature as a function of pressure. The empty circles are
from Ref. 23. The line is a quadratic fit. The inset shows a zoom-in the maximum
region. Right: Interfacial free energy as a function of pressure. The solid points
are from this work, and the empty points are from Ref. 41. The line is a quadratic
fit constrained to have the vertex at the same pressure (−2000 bars) than the
quadratic fit of the left panel.
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which mean that ηe
γ is positive. On the other side of the vertex,

from −2600 to −2000 bars, Tm increases from 279 to 280 K, while
γm decreases from 27.1 to 26.5 mJ/m2. Hence, dγm/dpm < 0 and
dTm/dpm > 0 so that the same sign in ηe

γ holds. Note that Eq. (11)
is only valid for planar interfaces along the melting line. If one tries
to apply this equation away from of this line as was done in previous
studies,7,14,71 one should probably incorporate terms that account for
the change in γ due to curvature. Note also that the empirical relation
proposed by Turnbull, which states that γm is proportional to the
change in melting enthalpy ΔHm, does not describe γm well at high
pressure. From 1 to 2000 bars, ΔHm decreases from 1.44 to almost
1 kcal/mol in experiments72 and from 1.29 to ∼1 kcal/mol73 for the
TIP4P/Ice model. Thus, the Turnbull relation predicts a decreasing
γm, which is not supported by our direct calculations via the mold
integration technique.

As can be seen in Fig. 7, the knowledge of the equilibrium melt-
ing curve and the assumption of a constant value for the interfacial
excess entropy are sufficient to understand the complex variation of
γm along the melting line. The fact that the melting line does not
depend on the exposed plane or in an order parameter shows that
the shallow minimum found in γ should be robust. Another rele-
vant excess variable that depends on γm, Tm, and ηe

γ is the excess
internal energy ee

γ,

ee
γ = γm + Tmηe

γ. (13)

The excess internal ee
γ is the difference in energy between the

actual system having an interface and a virtual system where the two
phases remain unchanged up to the dividing surface (the equimolar
one in this case). As a result of Eq. (12), the following relation holds:

dee
γ

dpm
= Tm

dηe
γ

dpm
, (14)

so that if ηe
γ is constant, then ee

γ must be constant as well. If we
approximate ηe

γ as constant with the value of 0.32 mJ/m2 K, we find
ee

γ = 115 mJ/m2.

IV. CONCLUSIONS
In conclusion, we perform seeding simulations to study ice

nucleation at negative pressures. Such conditions can be relevant
in porous media and water transport in plants, where supercooled
water can be at negative pressure. By comparing with the previous
results, we show that universal empirical expressions describe Nc,
ΔGc, γ, and J as a function of supercooling for isobars in the regime
from strongly negative (−2600 bars) to moderately positive pressures
(500 bars). Only when pressure is high (2000 bars) do these relations
break down. In the regime where pressure hardly plays any role, the
isobaric Tolman length is predicted to be positive and roughly con-
stant with a value of 0.24 nm. In addition, our results suggest that
the homogeneous nucleation line should be parallel to the coexis-
tence line when pressure is below ∼500 bars (while at higher pressure
they are not). We explain this result by inspecting how the interfacial
free energy at coexistence changes with pressure. We evaluate the
interfacial free energy at coexistence at different states from strongly
negative to high pressure by means of the mold integration tech-
nique. We show that the interfacial free energy at coexistence barely

changes with pressure as long as the system is below 500 bars. In
fact, a shallow minimum is reported at negative pressure, suggesting
that the minimum interfacial free energy between ice Ih and water is
around 26 ± 1 mJ/m2 for the basal plane expanding for a broad range
of pressure centered around −2000 bars. Then, we use the Gibbsian
formalism to explain that this minimum in the interfacial free energy
is connected to a maximum in the melting temperature as a function
of pressure. In particular, we show that the change in the interfacial
free energy with pressure is proportional to the excess entropy and
to the slope of the melting line. Thus, the reentrance in the inter-
facial free energy occurs because of the reentrance in the melting
line, which happens due to the crossover in density between ice and
water. Finally, we estimate the excess entropy and the excess energy
of the ice Ih–water interface. We suggest that a constant value of
0.32 mJ/m2 K and 115 mJ/m2 is enough to provide a good descrip-
tion of the thermodynamics of the ice Ih–water interface within the
studied pressure range.
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APPENDIX: INTERFACIAL FREE ENERGY ALONG
THE MELTING LINE FOR A GENERAL DIVIDING
SURFACE

In this work, we used the equimolar dividing surface for sim-
plicity. However, Eqs. (11) and (12) can be generalized for any choice
of the dividing surface. To do so, it is necessary to involve not only
the interfacial Gibbs–Duhem relation (10) but also the ice and liquid
Gibbs–Duhem relations. Respectively, these are

dμm − vidpm + sidTm = 0, (A1)

dμm − vwdpm + swdTm = 0, (A2)

where v is the volume per molecule (the inverse of the number den-
sity) and s is the entropy per molecule. Since the phase equilibrium
holds, dμm, dpm, and dTm are common in all phases. Note that from
Eqs. (A1) and (A2), one can obtain the Clausius–Clapeyron relation
that explains the slope of the melting line,

dTm

dpm
= vw − vi

sw − si
. (A3)

By also including Eq. (10) in the relation, one can obtain the
temperature and pressure dependence of the interfacial free energy
without imposing a specific dividing surface. For the temperature,
one obtains

dγm

dTm
= [Γvwsi − visw

vw − vi
− ηγ], (A4)

whereas for the pressure, one finds

dγm

dpm
= [Γvwsi − visw

vw − vi
− ηγ]

dTm

dpm
. (A5)

As can be seen, at the equimolar dividing surface where Γ = 0,
one recovers Eqs. (11) and (12). These expressions are relevant when
nucleation data are extrapolated to coexistence because the relevant
dividing surface in nucleation is usually the surface of tension for
which Γ ≠ 0.
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