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ABSTRACT
We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster
by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and
temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous
liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy
with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation
studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each
local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit
in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we
can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free
energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a
heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces
at equilibrium can be used to describe nucleation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0072175

I. INTRODUCTION

The thermodynamics of an inhomogeneous system having a
curved interface is a topic of interest.1–18 However, even though the
thermodynamic description was developed long ago by Kondo19 and
presented in detail in the classical book by Rowlinson and Widom,20

to the best of our knowledge, it has not been applied to the descrip-
tion of experimental results. Thus, the theory has been treated in
most cases as a “formal” result rather than a result from which one
can extract useful information about the system. How is it possi-
ble for a system with one component (in the absence of an external
field) to have an interface between two phases at stable equilibrium?
Equilibrium implies that the chemical potential is the same in both
phases. Stable equilibrium means that the system remains in its state
even after small perturbations from the equilibrium state. This is
possible in the canonical ensemble (NVT) which has constant num-
ber of particles N, volume V , and temperature T. In this case, the

equilibrium is stable21–23 since the system may find a minimum in
the Helmholtz free energy F. However, this is not possible in the
grand-canonical ensemble (μVT) where chemical potential μ, V , and
T are constant as was discussed by Lee, Telo da Gamma, and Gub-
bins23 and Oxtoby and Evans.24 In this case, the system may reach
equilibrium (equal chemical potential in both phases), but the equi-
librium will be unstable as the system reaches a maximum in the
grand potential Ω rather than a minimum.23,24 The same is true in
the isothermal–isobaric ensemble (NpT) where pressure p, N, and
T are constant, as in this case when the equilibrium is reached (i.e.,
identical chemical potential of both phases), the system reaches a
maximum in the Gibbs free energy G and the equilibrium is unsta-
ble. Therefore (for one component systems), NpT and μVT are not
appropriate ensembles to study the thermodynamics of curved inter-
faces, simply, because the system never finds stable equilibrium for
them. Thermodynamics deals with stable equilibrium, and there-
fore, the natural ensemble to study curved interfaces is the canonical
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one. In fact, the theoretical description of curved interfaces used by
Kondo, and Rowlinson and Widom, is developed for a system at
constant N, V , and T.

In 1984, Rowlinson-Gubbins and co-workers performed a
beautiful study of a droplet of liquid in contact with its vapor for the
Lennard-Jones system.7 In addition, Vrabec and co-workers studied
the same system in more detail.9 In the last 20 years, Binder and
co-workers have studied curved interfaces, not only for a curved
interface between two fluid phases but also between a solid and a
fluid.2,5,25–33 It is also clear that among all of the curved interfaces,
the spherical interface is probably the most important one. Thus,
simulations have been useful in obtaining stable curved interfaces
for a large number of problems. However, again, one rarely sees the
application of the formalism of Kondo19 when describing curved
interfaces in simulations or experiments.

There is another reason to study spherical interfaces. We have
recently shown (for a one component system) that when the stable
spherical interface (obtained in the NVT ensemble) is studied in the
NpT ensemble, then half of the time the system transforms into the
external phase and the other half into the internal one.34–36 When
studying nucleation, one usually defines the critical nucleus as that
for which the probability of evolving to the phase of the nucleus is
one-half and the probability of evolving to the external one is the
other half. Thus, the stable spherical solid cluster found in the NVT
simulations is a critical nucleus in the language of nucleation. In
other words, the same physical system having a spherical interface
can be regarded as being at equilibrium or as being critical, simply
by changing the ensemble at which it is considered. Thus, the lan-
guage of the thermodynamics of curved interfaces (which describes
the stable equilibrium in the NVT ensemble) can rigorously be used
in the context of nucleation (that describes unstable equilibrium in
the NpT ensemble). Although this connection seems obvious now
and has been confirmed by simulations for several systems as bub-
bles,34 drops,36 or solids clusters,35 we believe that is it not widely
known in the literature although it is likely that this connection has
being on the air for some time.21–24,37–40

It is interesting to discuss whether a stable interface can be
found in other ensembles besides the NVT. To answer this ques-
tion, it is useful first to imagine a spherical interface at equilibrium
(i.e., same chemical potential) as the external phase. Then, imag-
ine that a small perturbation is performed changing the size of the
internal spherical phase. If the chemical potential of the external
phase is not modified by the perturbation of the internal phase,
then the equilibrium will be unstable. This is the case of the μVT
and NpT ensembles as in these ensembles changing the proper-
ties of the internal phase does not modify the chemical potential of
the external phase (which is given by either μ and T or p and T,
respectively). However, in the NVT ensemble, if the internal phase
is perturbed, the density (and pressure) of the external phase will also
be modified, and therefore, the chemical potential will change. For
the new chemical potential, the size of the critical cluster will be com-
pletely different of that of the perturbed cluster and the system could
return to equilibrium (for instance, if the solid cluster increased its
size slightly, becoming pre-critical for the new chemical potential,
and with the opposite behavior for a fluctuation reducing its size).
Another ensemble that allows one to stabilize nuclei (or spherical
interfaces) is the isoenthalpic–isobaric (NpH), where enthalpy H, p,
and N are fixed but T is allowed to change. In this case, a change

in the size of the equilibrium interface (where the chemical poten-
tial of both phases is identical) will change the chemical potential of
the external phase (since it will change not its pressure but its tem-
perature). In fact, equilibrium solid clusters in the NpH ensemble
were obtained by Zepeda-Ruiz et al.41 In the microcanonical ensem-
ble (NVE), one can also stabilize curved interfaces as changing the
size of the equilibrium cluster will modify both T and p so that the
chemical potential of the external phase μ will change.

The condition of chemical equilibrium between two bulk
phases is reached for a given T at a certain value of p that will be
denoted as pcoex. This pressure will also be the equilibrium pressure
between two phases obtained in the NVT ensemble in the presence
of a planar interface. However, when having a spherical interface in
the NVT ensemble, it is possible to have stable equilibrium between
two phases for several values of p at a certain value of T by changing
the radius of the interface. The regions of coexistence in the NVT
have been extensively described by Binder and co-workers2,5,25–33

and by MacDowell et al. for the Lennard-Jones fluid.42,43 Another
example can be found in the work of Richard and Speck.13

Recently, we studied using computer simulations the case of a
spherical crystal formed by hard spheres (HS) in equilibrium with
the liquid phase forming a stable curved interface in NVT simula-
tions. In Fig. 1, we show a snapshot of the system. We were able
to obtain up to ten different solid stable clusters depending on the
thermodynamic conditions N and V .35 In the case of HS, T only
determines the velocities of the particles but it does not affect its
residual properties (i.e., the difference between those of the real
system and those of an ideal gas). Strictly speaking, our simula-
tions were not for a true HS potential but rather a continuous steep
repulsive potential44 which mimics the properties of hard spheres

FIG. 1. Snapshot of a stable nucleus in contact with its melt. Solid particles are
shown as spheres and liquid ones as points.
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TABLE I. Presentation of the ten systems that we shall employ to validate our theoret-
ical approach. The same values of N and V will be applied to the theoretical scheme
case by case. The size of the stable nucleus in the simulation is given by ⟨Nsim

sol ⟩.
These simulations were performed in Ref. 35. We use reduced units for volume (σ3)
and density (σ−3).

Label V N ρ = N/V ⟨Nsim
sol ⟩

I 10 686.4 10 540 0.986 30 1 925
II 20 195.5 19 779 0.979 38 2 736
III 20 195.5 19 829 0.981 85 3 718
IV 49 599.9 48 207 0.971 92 5 604
V 49 599.9 48 357 0.974 94 8 602
VI 108 265.2 104 675 0.966 84 10 498
VII 66 900.1 65 383 0.977 32 15 554
VIII 108 265.2 105 475 0.974 23 23 558
IX 108 265.2 105 875 0.977 92 28 879
X 887 000.0 853 712 0.962 47 129 926

quite well.44–48 The advantage of using a continuous potential is
that one can use standard molecular dynamics programs such as
GROMACS49 or LAMMPS,50 which are highly optimized. It must
be recognized that we obtained our solid clusters by trial and error
(combining different values of N and V). This is so because even
though we knew that the system, when stable, should be in a mini-
mum in the Helmholtz free energy F, we were unable to determine
the value of F for the inhomogeneous system. Therefore, a theoreti-
cal framework to understand and predict the size of the stable solid
clusters obtained by simulation in our previous work is needed. In
an important contribution, Richard and Speck initiated the attempt
to obtain via theory an estimate of the size of the spherical solid
cluster obtained in NVT simulations for HS.13 Here, we incorporate
some improvements to the theory (and provide some clarifications
about the role of pressure as well as its relation with classical nucle-
ation theory). We start validating our scheme by comparing with
previous simulation result as well as with a few new results. The
parameters of these systems can be found in Table I. We show that
this scheme is capable of describing quite accurately the simulation
results. Thus, the theoretical treatment helps in understanding the
results obtained in our previous simulations and also to extend our
description to an arbitrary system in the NVT ensemble. Further-
more, the theory allows us to develop a strategy (better than trial and
error as used previously) for searching stable spherical solid clusters
in NVT simulations for systems of high practical interest, as it is the
case of water. Since we anticipate further research on the area of sta-
ble spherical solid clusters in NVT simulations, we believe that the
theoretical treatment presented here may be of interest for future
studies. In Sec. II, we shall describe briefly the thermodynamics of
curved interfaces.

II. THERMODYNAMICS OF CURVED INTERFACES
AT EQUILIBRIUM

We shall briefly summarize the thermodynamics of curved
interfaces as described by Kondo et al.,19,51 Rowlinson-Widom,20

and Mullins.52 We shall focus on the case of the spherical solid clus-
ters. Let us assume that one has a spherical solid cluster in contact
with the liquid at equilibrium in a system at constant N, V , and T.

Since the system is stable, it must be at a minimum in the Helmholtz
free energy. Besides this, at equilibrium, three other requirements
must be satisfied:∇μ(r) = 0,∇ ⋅ p = 0, and∇T(r) = 0. The first con-
dition states that the chemical potential μ must be the same in all
points in the system, given that particles can diffuse (i.e., it is a
homogeneous property).53 The second one is called the condition
of mechanical equilibrium, which says that the divergence of the
pressure tensor p is the null vector. Thus, the mechanical equilib-
rium condition does not require that the pressure is homogeneous
(indeed, the pressure is not homogeneous in the system having a
curved interface).54 The third is similar to the first one but for T. In
the Gibbsian formulation of curved interfaces, one assumes that the
system is composed of two macroscopic phases divided by a surface
of zero volume.55 The properties of each of these macroscopic phases
(p, density ρ, and μ) are obtained from the properties of a bulk sys-
tem. Therefore, the Gibbsian picture is that one has two bulk phases
separated by an interface. Although the interface has zero volume, it
contributes to the thermodynamic properties of the system (except
for volume). The number of molecules at the interface, also known
as excess particles Nexc, can be obtained from the equations

N = Nsol +NL +Nexc = ρsolVsol + ρLVL +Nexc, (1)

V = Vsol + VL, (2)

where the subscript sol denotes the properties of the solid and the
subscript L denotes the properties of the external liquid phase. One
then writes the Helmholtz free energy of the system F as

F = Nsolμsol − psolVsol +NLμL − pLVL +Nexcμexc + γAsol, (3)

where Asol is the area of the interface and γ is the interfacial free
energy. Strictly speaking, a thermodynamic description is only pos-
sible when the system is at equilibrium. There, μ is homogeneous so
that we can write that μsol = μL = μexc = μ, where μexc is the chem-
ical potential of the excess particles (not to be confused with the
excess chemical potential used in statistical mechanics), and F can
be written as

F = Nμ − pμ
solVsol − pLVL + γAsol. (4)

The meaning of the superscript μ in the pressure of the solid
will be clarified later on. By writing explicitly the dependence of the
volume and area on the radius of the spherical solid cluster, one has

F = Nμ − pμ
sol(4/3πR3

sol) − pL(V − 4/3πR3
sol) + γ(4πR2

sol). (5)

At a molecular scale, there is some arbitrariness in determin-
ing Rsol. Since F, μ, pμ

sol, and pL are fixed, changing Rsol for a certain
system also changes the value of γ. There are two popular choices
for Rsol. The first is the Gibbs dividing surface, Rsol = Re

sol, for which
the number of excess particles Nexc is zero (meaning that particles
belong either to the solid or to the liquid, but not to the interfacial
region). The second is the surface of tension, Rsol = Rs

sol, for which γ
is a minimum with respect to changes in the location of the divid-
ing surface (γs). Actually, by taking the notational derivative (i.e., an
arbitrary change in Rsol without any physical change in the system)
represented by square brackets, one obtains

pμ
sol − pL = 2

γ
Rsol
+ [

dγ
dRsol

]. (6)
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By definition, [dγ/dRsol] = 0 when Rsol = Rs
sol, leading to the

celebrated Young–Laplace equation

pμ
sol − pL = 2

γs

Rs
sol

. (7)

One difficulty in dealing with crystal–melt interfaces arises
from the crystals ability to support elastic stress. What is the value of
the pressure of the internal phase to be used in the thermodynamic
description? We have shown recently that, for HS, the actual pres-
sure of the solid cluster is smaller than that of the external liquid56

(this observation had been also made in a Lennard-Jones system14).
That would lead to a negative value of γs which is unphysical. As
a matter of fact, since solids can support stress, its actual pressure
is related to the external pressure and the curvature toward a sim-
ilar relation to that of Eq. (7) albeit somehow different since it is
found from mechanical arguments instead of thermodynamical. In
this case, psol − pL = 2 f /R, where f is the surface stress and R is the
mechanical radius of the solid.57–59 We mentioned previously that
μ is homogeneous in the system so that it is the same in the liq-
uid and in the solid phase. However, the actual pressure leads to
a value of μ for the bulk solid phase, which is different from that
of the liquid phase spoiling completely the thermodynamic treat-
ment. Therefore, since we know for sure that μ is homogeneous,
we should use the value of the pressure of a “bulk” solid phase with
the same μ as the external liquid phase. That explains the origin of
the superscript μ in the pressure of the solid. Implicitly, this shows
that the critical nucleus presents subtle differences with respect to a
bulk phase. In a sense, the thermodynamic description of spherical
solid phases requires the properties of a “virtual” solid rather than
the properties of the actual solid. The use of virtual states as refer-
ence states is common in thermodynamics. It is used, for instance,
in binary mixtures for defining the reference state of the solute (in
the assymetric criteria).60 Therefore, for psol and ρsol, one should use
the values of a virtual bulk solid having the same μ as that of the
external liquid phase. This argument was already suggested by Tol-
man (although in a different context),61 introduced theoretically in
the paper of 1984 by Mullins52 followed later by Cacciuto et al.,62,63

and has been proven to be correct in our recent work.56 As a matter
of fact, Gibbs clearly stated that one should consider the properties
of a bulk phase.55 The solid cluster has stress and does not behave as
a bulk phase. Indeed, Richard and Speck observed a smoothly decay-
ing average density profile with a density at the center of the nucleus
that was smaller than the bulk density at the same μ.13 This was also
observed in Ref. 56. Nevertheless, since in this formalism one uses
bulk properties, there is no need to know the actual properties of the
solid cluster.

Moreover, there are some useful relations that hold when the
system is at equilibrium. One of these relates γe (the value of the
interfacial free energy when one uses the Gibbs dividing surface Re

sol)
and γs,

γe
= γs
[
(Rs

sol)
n
+ (n − 1)(Re

sol)
n

nRs
sol(R

e
sol)

n−1 ]. (8)

The relation between γs and γe for a spherical interface was
known from previous work.20 Here, we extend it (rigorously) to
three interfaces (sphere, cylinder, or planar). The value of n in the
previous equation can be 3, 2, 1, which corresponds to a spherical,

cylindrical, or planar interface respectively. Note that γe is larger
than γs for the sphere and the cylinder as γs, by definition, is the value
of γ at the minimum, which defines the surface of tension Rs

sol. The
previous equation is found from the generalization64,65 of Eq. (7),
which is given by

pμ
sol − pL = (n − 1)

γs

Rs
sol

. (9)

At this point, we would like to make a comment for the pla-
nar interface. When one has a planar interface at equilibrium, there
is no difference in pressure between the solid and the liquid phase
so that in this case, psol = pL. In addition, for a planar interface
Re

sol is well defined but Rs
sol is not. In fact, since for a planar inter-

face the value of A does not change by moving the location of the
interface, the value of γ is invariant to changes in the location of
the interface, and there is no minimum of γ as a function of the
location of the dividing surface, which is the property that defines
Rs

sol. Of course, for a curved interface, there is always a difference
between Re

sol and Rs
sol for arbitrarily large solid clusters, but the dis-

tance between these two surfaces at a planar interface is a wrong
concept. One could, of course, talk about the limit to infinite size
of the distance between Re

sol and Rs
sol, which is the definition of the

Tolman length δT , an important parameter to explain the curvature
dependence of the interfacial free energy.1,6,10,35,61 Thus, for a planar
interface, γ does not depend on the dividing surface, and in this case,
the Gibbs dividing surface is the most convenient choice.

Now, the reader may get the feeling that evaluating γ is a sim-
ple task. In fact, if F were known, one assigns a value to Rsol, and
since all terms in Eq. (5) are known but γ, one then obtains a value
for the interfacial free energy γ. By using different values for Rsol,
one could easily obtain the one for which γ is a minimum, thus find-
ing γs and Rs

sol. Nevertheless, the value of F for the inhomogeneous
system having the curved interface is, in general, unknown both in
experiments and in computer simulations so that our knowledge of
γ for curved interfaces is limited or absent. We have a rigorous for-
malism which is difficult to apply. Furthermore, in general, there is
no rigorous mechanical route to γ (i.e., obtaining γ from the pres-
sure tensor).7,9,59,66–68 The only exception to this rule is the case
of a planar interface between two fluid phases at coexistence.69,70

Not surprisingly, hundreds of papers present results of γ (both
from experiments and from simulations) for the planar interface
between two fluid phases at equilibrium, but results for γ for curved
fluid–fluid interfaces or for solid–fluid interfaces at equilibrium are
scarce.

However, as we have shown recently, the stable spherical solid
cluster at constant N, V , and T is critical in the NpT ensemble, and
since nucleation rates J (which can be measured in the laboratory)
can be described quite well by classical nucleation theory (CNT, as
described by the Volmer–Weber–Becker–Doring–formalism71–85),
the values of γs obtained by fitting nucleation rates to CNT could
also be used in the thermodynamic description of the system at equi-
librium in the NVT. Turnbull was the first to realize that nucleation
studies could be useful to learn something about the value of γ,73 and
it is fair to recognize that only recently have we been able to under-
stand the connection properly. When using CNT, one is using Rs

sol
and γs as the Young–Laplace equation is implicit in the formalism,
which leads to the key equations of CNT (see Appendix A). We have
shown that the values of γs obtained from nucleation studies allow
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one to describe the equilibrium case. An important result of these
previous studies performed in our group is that now we know how
the value of γs changes with the physical changes in Rs

sol.
35,48 In fact,

we found that Tolman’s equation

γs
= γ0
(1 − 2

δT

Rs
sol
), (10)

with parameters δT = −0.41σ and γ0
= 0.576 kT/σ2, where σ repre-

sents the hard sphere diameter, describes quite well the value of γs

for HS. Note that for γ0 we use an average value of γ from planar
interfaces at equilibrium having low Miller indices. Although our
previous studies deal with the spherical interface, Eq. (10) can be
extended to cylinders as follows:

γs
= γ0
(1 −

δT

Rs
sol
). (11)

Note that we use the same δT for cylinders although certainly
this is not necessarily true. Nevertheless, as shown in Ref. 86, the
difference between δT of the spherical geometry differs only slightly
from the one for cylinders so it seems to be a reasonable approxima-
tion. For a planar interface, we shall use γs

= γ0, although a planar
interface has certain Miller indices given by hkl, so that the value of
γ0, which is an average of several planes, is only an approximation,
and one should use the value of γ of the actual plane exposed to the
liquid. Furthermore, from our previous studies35 of HS, we learned
about the distance between the radius Re

sol and Rs
sol. We found that

the distance between these two important surfaces is not constant
but it changes with the radius as

Re
sol − Rs

sol = δT + 2.613σ2
/Rs

sol. (12)

Therefore, one can state that for hard spheres, we have a
detailed description of the curved interface between a spherical solid
cluster and a liquid phase at equilibrium that can easily be extended
to cylindrical and planar solid clusters as well.

III. THERMODYNAMICS OF CURVED INTERFACES:
EXTENSION TO CONFIGURATIONS FAR
FROM EQUILIBRIUM

The main purpose of this work is to propose an approximate
treatment which describes not only the Helmholtz free energy F in a
NVT system at equilibrium but also the free energy profile within the
NVT ensemble as a function of a certain order parameter. The nat-
ural choice of the order parameter for the system considered in this
work, a system of hard spheres in the NVT ensemble at high densi-
ties, is the size of the solid cluster NS. When there is no solid cluster,
the system is a homogeneous liquid. By changing NS, we can deter-
mine the free energy profile, i.e., how the value of F changes with the
order parameter. Note that we use the subscript sol when the solid
is in stable equilibrium with the liquid and the subscript S when this
is not the case. Thermodynamics describes the average properties
of a system which are obtained mainly from configurations within
10–15 kT to the minima of the free energy profile. Thermodyna-
mics cannot provide information about the probability of obtaining
particular configurations far away from the typical ones close to the

minimum (these configurations will have little probability). There-
fore, strictly speaking, thermodynamics reasoning cannot provide a
free energy profile. If one is interested in a rigorous description of the
free energy profile (which describes the probability of configurations
far away from the average value of the order parameter), then sta-
tistical mechanics should be used (see Appendix B). Therefore, any
treatment with a “thermodynamic” flavor aimed at obtaining the free
energy profile from thermodynamic arguments must be necessarily
approximate. We will present here a treatment of this type. With
the right input, the treatment should correctly describe the proper-
ties of the system when close to local minima, but it will be only
approximate for configurations far away from this minima.

The basic idea of the approach is to write F as in Eq. (5) but
allowing μS and μL to be different. This expression introduces a prob-
lem as now one must define μexc which is unknown, but this problem
can be formally removed by adopting the Gibbs dividing surface
which we shall denote as Re

S. Then,

F(Re
S) = ρS(4/3π(Re

S)
3
)μS − pS4/3π(Re

S)
3

+ ρL(V − 4/3π(Re
S)

3
)μL − pL(V − 4/3π(Re

S)
3
)

+ γe(Re
S)(4π(Re

S)
2
). (13)

We use this expression as the one describing the free energy
profile. In the supplementary material, it is a FORTRAN program
with comments that allows one to compute the free energy profile.
In the scheme, first, we shall define the total number of particles in
the system N, the volume of the system V , and the geometry we want
to consider (given by n). Then, in order to obtain the values of the
variables ρS, pS, μS, ρL, pL, μL, and γe(Re

S) for a certain value of Re
S, we

follow these simple assumptions and calculation steps:

Assumption 1 (considering bulk phases). We assume that both
the solid cluster and the liquid are bulk phases. That means that we
only need one of the variables ρ, p, μ to determine the other two. In
fact, ρ and p are connected through the equation of state (EOS), and
μ can be obtained from the expression

μ = ∫
p

pcoex

1
ρ(p)

dp, (14)

where pcoex is the pressure at which a bulk solid and a bulk liquid
have the same chemical potential μ and also where both phases will
coexist when having a planar interface. For practical convenience,
we will set μS(pcoex) = μL(pcoex) = 0. For the pseudo-HS potential,
we have shown using computer simulations that pcoex = p/(kT/σ3

)

= 11.648 (very close to the value of true HS which is around
11.5787–89). This value is used in the scheme. In addition, in the cal-
culation, we use the bulk EOS computed in simulations. A figure
can be found in the supplementary material of Ref. 56 as well as the
parameters of the fit that are also included in the program provided
in the supplementary material of this work. The EOS can also be seen
in the caption of Table II.

Assumption 2. (applying equilibrium equations). We assume
that all the equations we found for the stable solid cluster also hold
for configurations with little probability (i.e., configurations where
the value of the order parameter is far away from the average value
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TABLE II. Parameters for the theoretical scheme. Along with these parameters, one
has to define also the values of N and V . Furthermore, the following EOS (in reduced
units) are used: for the solid psol = 162.96ρ2

sol − 299.42ρsol + 146.8, and for the liquid
pL = 141.04ρ2

L − 212.12ρL + 86.29. Reduced units for pressure are given by (kT/σ3)
and for density by (σ−3).

n γ0
/(kT/σ2

) δT/σ pcoex/(kT/σ3
)

Sphere: 3
Cylinder: 2 0.576 −0.41 11.648
Planar: 1

at equilibrium). Although these configurations appear via fluctua-
tions at equilibrium, from the point of view of thermodynamics,
these look like non-equilibrium configurations as they are far away
from the average value of the order parameter of the system at equi-
librium. Therefore, we shall assume that the equations that are valid
to describe the system in the proximities of the minimum in the
free energy (i.e., when NS is close to Nsol) can also be used for
configurations where NS is significantly different from Nsol.

In particular, we shall assume that the distance between Re
S and

Rs
S is given by Eq. (12), that the value of γs

(Rs
S) can be taken from

the generalized Tolman’s equation [Eq. (10) in the case of spherical
solid clusters], that γs

(Rs
S) and γe

(Re
sol) are related via Eq. (8), and

that the generalized Young–Laplace equation [Eq. (9)] describes the
difference in pressure for these values of γs

(Rs
S) and Rs

S. Therefore,
the values of δT and γ0 have to be provided.

Step 1: Estimating γe
(Re

S)

A radius at the surface of tension is selected, Rs
S, and its cor-

responding equimolar dividing surface Re
S is found from Eq. (12).

Then, the interfacial free energy at the surface of tension, γs(Rs
S), is

found from Eq. (10) for a spherical nucleus or Eq. (11) for a cylinder.
We use γ0 as a good approximation for the planar interface. Once
one knows γs(Rs

S), by using Eq. (8), one obtains γe(Re
S).

Step 2: Determining pS, ρS, pL, and ρL
A trial value is used for pL, which, in turn, gives the correspond-

ing ρL via the EOS that is provided. Then, since we already know
γs(Rs

S) and Rs
S, by using Eq. (9) for this trial pL, we obtain pS. Once

we have pS, we use the EOS to find ρS. Now, whether this trial is valid
or not depends on the equation

N = ρS4/3π(Re
S)

3
+ ρL(V − 4/3π(Re

S)
3
). (15)

We drop the superindex μ in pS although we consider bulk
properties because in this case, the chemical potential of the solid
cluster is different from that of the liquid. The left side of the equa-
tion is known; by computing the right side for trial values of pL, one
can find the value that fulfill Eq. (15). Then, for this value, one obtain
F with Eq. (13) and returns to Step 1 to select another value of the
radius of tension.

In short, the approximate treatment proposed in this work
uses relations that are rigorous for the equilibrium solid cluster for
any value of NS although allowing μ to be different among phases.
The reader should not look to our treatment as a rigorous ther-
modynamic treatment. The only way to obtain F(NS) rigorously is
by means of the statistical mechanics formalism (see Appendix B).

However, this formalism may be useful if it is capable of theoretically
explaining the size of the stable solid clusters found in our simulation
studies and to describe qualitatively the free energy curve. Theory
is faster than simulation, and besides, it can be useful to determine
any set of thermodynamic conditions under which the solid clusters
are stable. We can implement the theory for a spherical solid cluster
(n = 3), for a cylindrical solid cluster (n = 2), or for a planar interface
(n = 1).

IV. RESULTS
In a previous work, we studied ten spherical solid clusters of

hard spheres surrounded by liquid, which were stable/metastable in
the NVT ensemble.35 The parameters for the system in which those
solid clusters where stabilized as well as the size of the solid clusters
can be found in Table I. We performed molecular dynamics sim-
ulations of pseudo-HS in the GROMACS package. The continuous
potential that almost reproduces HS was proposed by Jover et al.,44

and it is given by the expression

UPHS(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

50(
50
49
)

49
ϵ[(

σ
r
)

50
− (

σ
r
)

49
] + ϵ, r < (

50
49
)σ,

0, r ≥ (
50
49
)σ,

(16)

where σ represents the hard sphere diameter and ϵ is the depth of
the potential. This potential mimics the properties of HS when the
reduced temperature is T/(ϵ/k) = 1.5 (although, for true HS, T is
not relevant). In this paper, we use reduced units so that the length is
given in units of σ, density in units of σ−3, pressure in units of kT/σ3,
and chemical potential in kT units. When implementing the theory
described before, instead of presenting the value of F, we subtract the
free energy of a homogeneous liquid phase at the conditions given by
N and V . We shall use the superscript “o” for it,

Fo
= Nμo

L − po
LV . (17)

Thus, we shall define ΔF as

ΔF(NS) = F(NS) − Fo. (18)

At the end of the calculations, one has for a certain value of N
and V , the free energy curve ΔF as a function of the size of a spher-
ical, cylindrical, or planar solid cluster. The local minimum in ΔF
corresponds to stable solid clusters although it may not correspond
to the absolute minimum in ΔF so that they may be only metastable.
In a local minimum, ΔF is negative/positive when the considered
solid cluster is more/less stable than the homogeneous liquid. Let us
first present the results obtained in the theoretical treatment for sys-
tem I, which is characterized by N = 10 540 and V = 10 686.4σ3. This
is shown in Fig. 2(a).

As can be seen, the spherical solid cluster is less stable than the
homogeneous liquid (i.e., ΔF is positive in that minimum). There
is a free energy barrier separating the homogeneous liquid from the
spherical solid cluster, ΔFunstable

sol . Therefore, both transitions, from
liquid into a spherical solid cluster surrounded by liquid and from
such a system into the homogeneous liquid, are activated processes.
The size of the solid cluster at the maximum is around 500 parti-
cles. That means that if one introduces a larger spherical solid cluster
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FIG. 2. Both panels correspond to system I (i.e., N = 10 540 and V = 10 686.4σ3).
(a) Free energy profiles as a function of NS. Results are shown for spherical
(black), cylindrical (red), and planar solid clusters (green). These profiles should go
to zero at NS = 0, but we start the calculation from a certain size to avoid numerical
issues. (b) Simulation results for the evolution of the solid cluster number of parti-
cles over time. The simulation starts from a configuration having a spherical seed
surrounded by liquid. The shape of the solid cluster transits from spherical to cylin-
drical and then to planar. Time is in reduced units t∗ = t/τ where τ = σ

√
m/(kT)

is the unit time. This time unit is in the order of two diffusive times computed as the
time required for a particle to diffuse further than its size.

in a liquid while the system fulfills N = 10 540 and V = 10 686.4σ3,
the solid cluster will grow at the expense of the liquid following
a downhill trajectory in the free energy profile, ΔF(NS), to reach
the size of the metastable spherical solid cluster. An example of
that can be found in Fig. 2 of our previous work (for system IX).35

The solid cluster at the maximum is a critical nucleus (in the NVT
ensemble) as shown in the seeding study performed by Richard and
Speck.13 The cylindrical solid cluster is more stable than the spheri-
cal one (although still less stable than the homogeneous liquid). The
planar solid cluster is the absolute minimum in ΔF. The homoge-
neous liquid phase, the spherical and cylindrical solid clusters are
just metastable states of the system. Thus, in the phase coexistence
diagrams developed by Binder and co-workers, system I is within
the planar region. Further work on the phase coexistence diagram

will follow afterward. In our simulations of system I [see Fig. 2(b)
where the size of the nucleus over time is shown], we found that the
spherical solid cluster was stable for a few thousand diffusive times.
However, at a certain point, a fluctuation occurred and the system
transformed into the cylindrical solid cluster. That makes sense as
the cylindrical solid cluster is more stable than the spherical one. It
also means that the conversion from the spherical solid cluster into
a cylindrical solid cluster is an activated process and one must over-
come a free energy barrier. The theoretical treatment of this work
considers the transformation of a homogeneous liquid into a spher-
ical, cylindrical, or planar solid cluster surrounded by liquid, but not
the transformation between the sphere and the cylinder or between
the cylinder and the planar slab surrounded by liquid. In this work,
we have simulated the homogeneous liquid for very long times, and
it never transformed into the spherical solid cluster surrounded by
liquid, which makes sense as the free energy barrier is of about 70
kT. However, we also simulated the stable cylinder and we could
observe how it transformed into the planar interface easily, thus
indicating that there is only a small free energy barrier separating
the two states. The free energy curve transforming a homogeneous
liquid directly into a planar interface has a huge free energy bar-
rier. Hence, the way the system should reach the global equilibrium
is by using several steps, i.e., transforming first the homogeneous
liquid into a spherical solid cluster surrounded by liquid (with a
free energy barrier of 70 kT), then the spherical solid cluster into
a cylindrical one, and finally the cylinder into the planar slab. To
the best of our knowledge, this is one of the first examples of a
complex mechanism for nucleation to reach the global equilibrium
state.

The theory is quite successful in predicting the size of the
metastable spherical and cylindrical, and the size of the stable planar
solid clusters. In the spherical case, for instance, the local mini-
mum of ΔF occurs for about 1941 particles to be compared with the
simulation results, which was 1925(100). In the cylindrical case, we
theoretically obtain 3200 for 3400(100) in the simulation, and in the
planar one, we get 5090 for 5015(100) in the simulation. The value
in parentheses is the estimated error, as in simulations the spherical
solid cluster presents capillarity fluctuations, and one must deter-
mine its average size along the run. In this calculation, we used a
value of γ for a planar interface (i.e., at p = pcoex), which is the average
of several planes. However, for a planar solid–liquid interface of hard
spheres, γ has about 10% of anisotropy depending on the exposed
plane.90 Since the interfacial free energy of a curved interface is
obtained using Tolman’s equation with γ0

= 0.576 kT/σ2 and δT =

−0.41σ, if one uses a different value of γ0, another value of δT should
be used as well. Note that the nucleation results that were used to
obtain such Tolman length extrapolate very close to 0.576 kT/σ2.
The possibility to extend this study toward nuclei with facets where
the anisotropy in γ is unavoidable is beyond the scope of this work,
although it represents a very interesting possibility for future work.
Thus, the theoretical treatment of this work is able to provide a
coherent picture of the free energy profile of the system and to
reproduce simulation results. The only weak point is that we are
missing the possibility to describe the transformation of sphere
→ cylinder → plane as the intermediate state in this transitions
would have a complex intermediate geometry that would require
a more elaborated treatment.43 Note that the crossing of two solid
curves (for instance, for the sphere and cylinder) in Fig. 2 is not
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particularly useful as it only indicates that a spherical and a cylin-
drical solid cluster with the same number of particles have the same
free energy with respect to the homogeneous liquid. Unfortunately,
when the crossing occurs, the pressures of the corresponding liquids

and their chemical potentials are different so that the crossing is not
a transition state.

Let us now present the results for other systems. This is done
in Fig. 3 for six of the ten systems considered in our previous work

FIG. 3. Approximate free energy profile for the formation of a spherical (black), cylindrical (red), or planar (green) solid cluster from a metastable liquid in a HS system for
systems (a) III, (b) IV, (c) V, (d) VII, (e) IX, and (f) X. We keep the same labels as in our previous simulation work.35 The corresponding parameters of the system size N
and volume V can be seen in Table I following the label in the bottom-right corner of each panel within this figure, the resulting stable size is shown and compared with
simulations in Table III, and the estimated pressures and densities are shown in Table IV.
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(III, IV, V, VII, IX, and X). Apart from those that are plotted, for sys-
tems II, VI, and VIII, we obtained liquid as the global minimum for
the first two and cylinder for the last one. We can make the following
interesting observations:

● In general, the spherical interface is rarely the global equilib-
rium state of the system. System X is the only exception for
the considered cases.

● A jump from sphere to cylinder was found in simulations in
our previous work for systems, I, III, and IX. In fact, the the-
oretical treatment predicts that the cylindrical solid cluster
is more stable than the spherical one. For systems IV and X,
it is clear that this jump to the cylinder should not occur as
the cylinder is less stable than the sphere. However, for sys-
tem VII, this jump is possible although not observed in our
simulations.

● The homogeneous liquid is the most stable state for systems
II, IV, and, VI (note that systems II and VI are not shown).
In case IV, for instance, the pressure of the homogeneous
liquid is p = 13.35 kT/σ3, which is significantly higher than
the pressure at which the solid and liquid coexist via a pla-
nar interface, pcoex = 11.648 kT/σ3. Even though the pressure
is higher than the pressure at planar coexistence, the liq-
uid is more stable on its own than surrounding a spherical,
cylindrical, or planar solid cluster. Thus, one has achieved
a “superstabilizaton” of the homogeneous liquid.91,92 There,
the homogeneous liquid becomes the stable thermodynamic
phase.

In Fig. 4, we present the difference in chemical potential
between the two phases Δμ = μS(pS) − μL(pL) as a function of NS for
the spherical shape in system VII. Since we set the Young–Laplace
equation as true for any NS, the derivative of ΔF, i.e., dΔF/dNS,
is given by Δμ. In practice, a surface term may slightly affect

FIG. 4. In black, we show the chemical potential difference Δμ = μS − μL (in kT
units) and in red, the derivative of ΔF both as a function of NS. Results are for
system VII. The derivative is obtained from finite differences. When Δμ = 0, then
ΔF approaches an extremum in accordance with Fig. 3(d). In blue, we show a
rescaled ΔF to demonstrate that the minimum of ΔF corresponds to the second
root of Δμ. On the other hand, the first root corresponds to the maximum in ΔF
(see the vertical line).

the slope of ΔF, given that our treatment might fail to exactly
fulfill the interfacial Gibbs–Duhem relation, which is given by20

[dγ/dR]R=Re = (∂γe
/∂Re
)T (this problem does not arises if the capil-

larity approximation is used, i.e., γe
= γs
= γcoex, but this is against

the evidence found in the last three decades that γ is not con-
stant and changes with the curvature of the interface). In any case,
the difference between Δμ and dΔF/dNS (obtained from finite dif-
ferences) although not zero (as it should be when the interfacial
Gibbs–Duhem relation is satisfied exactly) is very small. As expected,
Δμ vanishes at the values of NS corresponding to the extrema of
ΔF. The first value of NS where Δμ = 0 corresponds to the maxi-
mum in ΔF. This is a critical nucleus in the NVT ensemble. It is
an unstable equilibrium as the chemical potentials of both phases
are the same, but it is in a maximum of ΔF. The second value of NS
where Δμ = 0 corresponds to the minimum in ΔF so that it corre-
sponds to a stable or metastable equilibrium (depending on whether
the local minimum is also the global minimum). This is also a crit-
ical nucleus (in the NpT ensemble), but it is stable at the same time
(in the NVT ensemble). Thus, at equilibrium, the chemical potential
of both phases are the same.

In Fig. 5, the value of the pressure of the liquid phase obtained
from the theoretical treatment is presented as a function of the cur-
vature 1/Rs

s of the spherical solid cluster for systems I, III, IV, and X.
Along with these results, we show a fit to NVT-seeding results from
Ref. 35. As can be seen, there are two crossing points between the fit
and each system curve, one corresponding to a maximum in ΔF and
the other to the minimum. At some point, when the solid cluster is
large enough, liquid pressure abruptly goes down as the crystalline
phase is of higher density.

Now, by taking the values of the solid cluster size at the minima
of ΔF, i.e., NS = Nsol, we can compare with our computer simulation
results from previous work.35 As shown in Table III, our approach
gives results for the spherical geometry that agree very well with the
simulations. The deviation is in average below 2.5% for the nucleus
size Nsol and below 0.8% for its radius Rs

sol. The error tends to be
higher for small systems. Thus, the theoretical treatment is able to

FIG. 5. Pressure in the liquid phase is represented against the inverse of the radius
of the solid cluster for systems I, III, IV, and X. The solid line is a fit to data from
Ref. 35.
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TABLE III. Tabular comparison of spherical solid clusters in simulation35 and the-
ory for different thermodynamic conditions obtained from the minimum of ΔF.
In addition, deviations of theoretical estimations with respect to the simulation
values are presented ΔNsol = (∣⟨Nsim

sol ⟩ − Ntheory
sol ∣)/⟨N

sim
sol ⟩ and ΔRs

sol = (∣⟨R
s,sim
sol ⟩

− Rs,theory
sol ∣)/⟨Rs,sim

sol ⟩. In addition, uncertainty in ⟨Nsim
sol ⟩ were estimated from the stan-

dard deviation of block averages in simulations, whereas in the theoretical approach,
they were obtained from error propagation (the brackets stands for the average as
in simulations Nsol has capillary fluctuations). In all cases, uncertainties were in the
range of 1%–5% so that they are comparable with the deviations. We use reduced
units for distance (σ) and volume (σ3). The parameters of the NVT system can be
seen in Table I.

Label ⟨Nsim
sol ⟩ Ntheory

sol ΔNsol (%) ⟨Rs,sim
sol ⟩ Rs,theory

sol ΔRs
sol (%)

I 1 925 1 941 0.8 7.54 7.55 0.1
II 2 736 2 952 7.9 8.48 8.70 2.6
III 3 718 3 926 5.6 9.40 9.57 1.8
IV 5 604 5 783 3.2 10.79 10.90 1.0
V 8 602 8 614 0.1 12.46 12.46 0.0
VI 10 498 10 770 2.6 13.32 13.43 0.8
VII 15 554 15 427 0.8 15.20 15.15 0.3
VIII 23 558 23 419 0.6 17.47 17.43 0.2
IX 28 879 28 616 0.9 18.70 18.64 0.3
X 129 926 127 891 1.6 30.93 30.75 0.6

describe quite well the size of the spherical solid clusters obtained
in simulation. Let us now compare the theoretical predictions for
the cylindrical and planar geometry. For systems III and IX, we
theoretically estimate stable cylinders of 5720 and 33 240 particles,
respectively. In simulations, we found in our previous work that the
sizes for these systems are 5800 and 34 150 particles, i.e., about 2.5%
deviation. Regarding the planar slab, we perform a new simulation
of a planar slab in stable equilibrium in a system of 15 800 particles
and 16 000σ3 volume. In this simulation, the planar solid cluster has
8300 particles, while our theoretical calculation estimates have 7836
particles so that we had about 5.5% difference. Since the length of
the simulation box does not necessarily match an integer number
of times the length of the unit cell, it is reasonable that the solid is
under some stress, which is not included in our theoretical treat-
ment. Besides the value of γ0 used in this work is the average of the
interfacial free energy for several planar interfaces, but, of course,
when introducing only a plane, the value of this plane should be
used. In any case, the prediction is quite reasonable even for the
planar interface.

At this point, we compare the pressures and densities with those
at the simulations. For the simulation results, we shall use the pres-
sure pμ

sol that a perfect solid bulk would have at the same μ as the
liquid and not its actual pressure. To do so, we first obtain the chem-
ical potential the liquid from its pressure (obtained from its density
and the EOS) by means of Eq. (14), and then, we use that value of μ to
obtain the pressure of the solid with the help of the EOS of the solid
(the same than in the theoretical approach). As shown in Table IV,
this theoretical treatment with a few simulation inputs reproduces
almost exactly the simulation results.

As we mentioned before, the stable/metastable spherical solid
clusters found in the NVT become critical when one performs sim-
ulations in the NpT ensemble (using the same value of N and with

TABLE IV. Tabular comparison of pressure and density of spherical solid clusters and
surrounding liquid in simulation35 and theory for different thermodynamic conditions
obtained from the minimum of ΔF. Deviations are in all cases smaller than 1%. We
use reduced units for pressure (kT/σ3).

Label pμ,sim
sol ptheory

sol ρμ,sim
sol ρtheory

sol psim
L ptheory

L ρsim
L ρtheory

L

I 13.38 13.32 1.078 1.076 13.21 13.15 0.970 0.969
II 13.18 13.13 1.074 1.073 13.03 12.96 0.967 0.966
III 13.03 12.98 1.071 1.070 12.89 12.85 0.964 0.964
IV 12.86 12.82 1.067 1.066 12.74 12.70 0.962 0.961
V 12.68 12.66 1.063 1.063 12.58 12.56 0.959 0.959
VI 12.61 12.58 1.062 1.061 12.52 12.49 0.958 0.957
VII 12.48 12.47 1.059 1.059 12.40 12.39 0.956 0.956
VIII 12.37 12.35 1.056 1.056 12.31 12.29 0.954 0.954
IX 12.32 12.31 1.055 1.055 12.26 12.24 0.953 0.953
X 12.05 12.03 1.049 1.049 12.01 11.99 0.949 0.949

p = pL). This connection allows us to obtain extra information from
the local minima of ΔF, as they are critical nuclei in the NpT ensem-
ble. Therefore, one can estimate the free energy barrier ΔGsol (i.e., the
maximum in the Gibbs free energy change when the critical nucleus
is formed from a homogeneous liquid while keeping N, p, and T
constant, which was denoted as ΔGc in our previous works35). At
the minimum of ΔF, we can compute the Gibbs free energy barrier
corresponding to nucleation through an isobaric–isothermal path
(at p = pL) simply as ΔGsol = A(Rs

sol)γ
s
/3. See Appendix A for more

details. In Fig. 6(a), we present these calculations along with previ-
ous molecular dynamics results.78,82 As can be seen, this theoretical
description reproduces the simulation results for free energy barri-
ers to nucleation ΔGsol. In Fig. 6(b), we show the dependence of the
liquid pressure at which a certain nucleus is critical against its crit-
ical size and compare with previous results as well.78,82 Moreover,
we show the evolution of the pressure in the liquid as a function of
the size of the solid cluster during its formation for systems I and
X, and as can be seen, there are two crosses corresponding to the
extrema in ΔF. In this work, we focus on describing the connec-
tion between the stable nuclei in the NVT ensemble and nucleation.
Thus, we are describing the nuclei at the minimum of ΔF. However,
the maximum could certainly be used as a description of nucleation
as well.

The phase coexistence of phases with curved interfaces is usu-
ally represented with a phase coexistence diagram where the chem-
ical potential is plotted against the packing fraction ϕ = ρπ/6. In
Fig. 7, we show this kind of description. We show systems I and X.
As can be seen, the region given by ϕ at which one can have a certain
type of geometry is limited and this geometry can be either stable
or metastable there. In the case of system I, only the homogeneous
liquid and the planar interface can be obtained as global minimum.
In the case of system X, one can have all configurations as global
minimum depending on ϕ.

Once we have tested the theory in the ten cases considered in
our previous work, obtaining good agreement, we use the theory
to extensively describe the nucleation of hard spheres in a finite
system as well as the phase coexistence of the solid and liquid in
the NVT ensemble, which includes spherical, cylindrical, and pla-
nar coexistence. Note that these are two sides of the same coin since
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FIG. 6. (a) ΔGsol as a function of the critical nucleus size Nsol . (b) Liquid pressure
at which the solid cluster is a critical nucleus as a function of Nsol . The same
legend from (a) applies in (b) although in the latter two additional dashed curves
are shown. These correspond to the pressure of the liquid along the formation of a
solid cluster of size NS in systems I (green dashed line) and X (cyan dashed line).
As can be seen, there are two crossings between these lines and the equilibrium
one corresponding to NS = Nsol . The crossing at smaller Nsol corresponds to the
maximum in ΔF and the one at the larger Nsol corresponds to the minimum. In
addition, the pressure of critical nucleus approaches (planar) coexistence for an
infinite system as expected.

the coexistence of a spherical solid nucleus with liquid can also be
regarded as the study of a critical nucleus in ensembles where the
chemical potential of the external phase is constant after changing
the size of the nucleus.

For instance, it is interesting to analyze how the size of the sta-
ble spherical solid clusters is affected by the conditions of the system
or under which conditions the sphere is more stable than the cylin-
der or the planar geometry. Key variables to describe the system are
N, V , ρ = N/V , or even Nsol. We shall now fix one of these vari-
ables and analyze how the properties of the system at equilibrium

FIG. 7. Chemical potential μ against packing fraction ϕ = (π/6)(N/V). The black
curve shows μ(ϕ) for the bulk liquid. Then, the coexistence of phases is repre-
sented for two different system sizes. Two different sizes as given by N are studied.
The volume V is changed covering different packing fractions ϕ. One size studied
is the one of system I (in red) and the other is the one of system X (in green).
Dotted lines represent the region of the coexistence of spherical nuclei with liquid.
Dashed lines represent the region of coexistence of cylindrical nuclei with liquid.
The dashed-dotted line represents the region of coexistence of planar solid–liquid
interfaces. The thick solid red and solid green curves connect the points where a
certain geometry is the most stable one, i.e., it is the global minimum. Any other
point is metastable for the given system. Also shown are the values correspond-
ing to the minima of systems I and X, respectively, in circles when they are local
minima and in squares when they are the global minima.

can be affected by changing one of the other three variables, for
instance, what happens when keeping N fixed while one changes
V . In Fig. 8(a), the profiles of seven systems with the same N and
different V are shown. As can be seen, the larger the volume, the
smaller the stable-critical nucleus. In addition, these smaller nuclei
are less stable with respect to the homogeneous liquid. Thus, at fixed
N, increasing the global density ρ increases the number of particles
of the phase whose density is larger (crystal) and vice versa. Hence,
(∂Nsol/∂V)N < 0. In this exercise, V ranged between 19 850σ3 and
20 450σ3, whereas N = 20 000. Our next analysis is about what hap-
pens in the equilibrium solid cluster when keeping V constant while
changing N. In this case, again the global density leads the way Nsol
changes so that (∂Nsol/∂N)V > 0. Results are shown in Fig. 8(b). In
this case, N ranged between 19 750 and 20 300, whereas V∗ = 20 150.
Thus, increasing the density of the system by changing either N or
V and keeping the other variable constant increase the size of the
spherical solid cluster. Now, we investigate the effect of keeping ρ
constant by changing both V and N accordingly. As can be seen in
Fig. 8(c), increasing the system size (both N and V to keep ρ con-
stant) dramatically affects the size of the stable spherical solid cluster
Nsol at constant ρ. The number of particles in the system ranged
between 60 000 and 1 200 000 while ρ = 0.97. Increasing the size of
the system increases the size of the stable solid cluster at constant ρ.
Thus, the density alone does not determine the value of Nsol.

To continue with the analysis, we investigate the possibility of
having several systems (differing in N, V , and ρ) having the same
size of the stable solid cluster Nsol. We do so by changing both V and
N, ensuring that we obtain the same value Nsol. In Fig. 9(a), we show
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FIG. 8. ΔF as a function of the number of crystalline particles NS for different
systems sharing the same (a) total number of particles N, (b) system volume V ,
and (c) global density ρ.

the free energy curve ΔF, and in (b), we show the chemical poten-
tial difference for systems with different conditions that lead to the
same Nsol. As can be seen, the free energy curve can be very differ-
ent for a single stable-critical nucleus. In fact, we have seen that the

FIG. 9. (a) ΔF and (b) Δμ as a function of the number of crystalline particles NS
for different systems where stable-critical nuclei are all the same.

values of pL at the minimum of ΔF are the same regardless of the
size of the system. However, at some point, we are in a inflection
point for ΔF when the system is sufficiently large. It is interesting
to note that in the case when both extrema merge into a single
point, then the curves like those in Fig. 5 would become tangen-
tial to the dependence of liquid pressure at which a solid cluster is
a critical nucleus. In Fig. 9(b), this effect can be seen from the fact
that Δμ is tangential to zero at Nsol. Note that ΔGsol is the same
in all the cases as given by A(Rs

sol)γ
s
/3. However, it is clear that

it is not possible to have any stable solid cluster beyond a certain
size of the system so that one cannot make the system arbitrarily
large. In fact, we always found in our previous study that the ratio
Nsol/N for all the cases where the spherical solid cluster was stable
for a certain time was between 0.05 and 0.20. We never succeeded
in getting this ratio below 0.05. This is well explained in Fig. 9(a) as
when one increases N, while keeping Nsol constant, the local min-
imum in ΔF is lost at some point. On the other hand, when the
system is too small, we also expect that no nucleus is stable at some
point.
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FIG. 10. Chemical potential μ of the most stable geometry at certain finite condi-
tions against the resulting packing fraction for three different systems characterized
by N = 1.5 ⋅ 105 (green), N = 4 ⋅ 105 (red), and N = 108 (blue). In black, μ of
the homogeneous liquid which only depends on ϕ. The region where a cer-
tain geometry dominates depends on the system size. Dashed areas represent
the transition region between equilibrium configurations (homogeneous liquid↔
sphere in liquid, sphere in liquid ↔ cylinder in liquid, and cylinder in liquid ↔
planar interface). Note that we assigned μ = 0 for the liquid and solid phases
at the coexistence pressure of the bulk phases (as when separated by a planar
interface).

To conclude, following the work of Binder and co-workers,27

we compute the chemical potential μ of the most stable configuration
of a certain system (homogeneous liquid or sphere/cylinder/slab in
contact with liquid) for a certain global packing fraction ϕ = ρπ/6
for different finite systems characterized by N. These results are
shown in Fig. 10. Let us focus on the system composed by 108 hard
spheres. For ϕ < 0.4997, the homogeneous liquid is the most sta-
ble configuration, i.e., it is the global minimum. Then, at 0.4997
< ϕ ≤ 0.5030, we find the sphere surrounded by liquid as the most
stable configuration; at 0.5030 < ϕ ≤ 0.5097, the cylinder wins; and
finally, above 0.5097, the planar slab takes over. We can see that
for systems where N < 1.5 ⋅ 105, the sphere is never the equilibrium
state and can exist only as a metastable state. Another observation is
that with increasing system size, the chemical potential approaches
the (planar) coexistence one as the curvature effects become
small.

V. CONCLUSIONS
In this work, we propose a thermodynamic treatment to

describe the change in the Helmholtz free energy F as a function of
the size of the solid cluster NS. In particular, we use the Gibbsian for-
malism extended by Tolman, Kondo, Mullins, and Rowlinson and
Widom. We include simulation inputs though. These are the equa-
tions of state and the change of both the interfacial free energy and
the distance between the equimolar and tension surfaces with curva-
ture. In particular, we apply it to a system of hard spheres at constant
N, V , and T. We use the thermodynamics of curved interfaces at
equilibrium to describe the whole energy profile so that only extrema

are actually quantitatively relevant. The rest of the curve is inter-
esting but only qualitatively. Despite being far from the coexistence
point (for planar interface), we observe different local minima cor-
responding to different configurations of the system which can be a
homogeneous liquid or a spherical, cylindrical, or planar solid clus-
ter in contact with liquid. We observe that the transition between
these configurations are via activated processes. In addition, we
observe that, depending on the thermodynamic conditions of the
system, a certain configuration is the equilibrium state and, in some
cases, the free energy barrier between the metastable liquid and the
equilibrium state is so large that intermediate states with smaller
barriers are visited even though they are actually less stable than
the metastable liquid in what reminds us to an Ostwald-like pro-
cess. By setting the conditions to the same as in previous simulation
results, we obtain the stable solid cluster size, pressures, and densi-
ties, finding excellent agreement with the simulations for spherical,
cylindrical, and planar geometries. In the simulation results, it was
shown that the stable nucleus in the NVT ensemble is critical in the
NpT ensemble. Once we validate our approach, we use it to exten-
sively describe the stabilization of nucleation solid clusters of hard
spheres in a finite system. First of all, we obtain the dependence
of the Gibbs free energy barrier with the size of the stable-critical
nucleus. Then, we evaluate the effect that a certain variable has over
nucleation in a finite system. We estimate the Helmholtz free energy
curves for systems sharing a certain parameter: N, V , ρ, or Nsol. We
show that if one fixes either N or V and vary the other, then if ρ
increases, the phase with larger density, in this case the crystal, grows
in number (i.e., Nsol increases) and vice versa. Moreover, we observe
that ρ alone does not explain the size of the stable nucleus as also
N or V are needed. At constant ρ, systems of different size present
very different sizes of the stable nucleus. Another finding is that one
can have the same stable-critical nucleus in different finite systems,
but the stability is not the same. Actually, at some point, the max-
imum and the minimum merge forming an inflection point. Thus,
one can stabilize a certain nucleus only in a certain range of system
parameters. Finally, we compute the chemical potential of the most
stable phase at certain finite conditions, and we show that we need
at least 150 000 hard spheres in order to achieve a spherical solid
cluster as global minimum. There, a paradoxical critical state can
actually last indefinitely in the absence of external perturbation. We
observe that the larger the system, the closer the chemical potential
is to the planar coexistence value as curvature gets more and more
negligible.

We hope that more studies aimed at investigating the equi-
librium of curved interfaces (specially spherical ones) in the NVT
ensemble follow on, taking into account that by doing that one is
studying the critical cluster found in nucleation studies.

SUPPLEMENTARY MATERIAL

See the supplementary material for finding a Fortran code
that is provided. This code allows one to compute the approxi-
mated Helmholtz free energy profile of a liquid of hard spheres
in which a solid cluster emerges (at constant N, V, and T).
This allows one to determine the Helmholtz free energy of
the solid cluster at equilibrium (and from there, the Gibbs
free energy barrier for nucleation at constant pressure and
temperature).
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APPENDIX A: CLASSICAL NUCLEATION THEORY

The Classical Nucleation Theory (CNT) aims at describing
homogeneous nucleation.75,93 The key magnitude in nucleation is
the nucleation rate J which represents the number of critical nuclei
that appear per unit of time and volume. CNT was developed by
Volmer–Weber and Becker–Doring71,72,75,94 and defines J as

JCNT = K0 exp(−
ΔGc

kT
), (A1)

where K0 is a kinetic term well described in classical books75 and
where exp(−ΔGc/kT) is a thermodynamic term that is usually
described with the Gibbsian formalism. In particular, ΔGc is the free
energy barrier to nucleation. Even though CNT includes both kinetic
and thermodynamic terms and certainly J is a kinetic magnitude,
in many occasions, CNT refers to the description of the free energy
barrier ΔGc. In a previous work, we showed that the stable nucleus
in the NVT ensemble was critical in the NpT ensemble.35 Thus, sta-
ble nuclei can be used to study nucleation so that there must be a
connection between the formalism used in this work and CNT.

The Gibbs free energy of a homogeneous liquid formed by N
particles, at pressure pL whose chemical potential is μL, is given by

Ghomogeneous = NμL. (A2)

When a solid nucleus appears, the system becomes inhomoge-
neous. Since we want to connect the formalism of curved interfaces
and CNT, we use the Helmholtz free energy F of the stable nucleus
to describe the Gibbs free energy of a critical nucleus as

Ginhomogeneous = F + pLV , (A3)

where F is given by Eq. (4). Note that the pressure that we have used
in the thermodynamic conversion between F and G is that of the liq-
uid. This has been discussed by Yang,95 and we have recently shown
(see the Supplementary Material of Ref. 56) that the average pres-
sure in the simulation equals that of the liquid when the mechanical
equilibrium condition (∇ ⋅ p = 0) is fulfilled. Thus, we have

Ginhomogeneous = NμL − pμ
solVsol − pLVL + γAsol + pLV . (A4)

Now, we can compute the Gibbs free energy barrier as the dif-
ference between the inhomogeneous and the homogeneous systems,
ΔGc = Ginhomogeneous −Ghomogeneous. This leads to

ΔGc = γAsol − Vsol(p
μ
sol − pL) = γAsol − VsolΔpμ. (A5)

Here, ΔGc is well defined just like F in Eq. (4), and in this
case, there is also arbitrariness in the location of the dividing sur-
face which affects γ. Thus, one can apply Eq. (A5) for any dividing
surface as long as the corresponding γ is used. For instance, one can
use Re

sol as long as the value of γ that one applies is γe or Rs
sol if γs

is used. In fact, by taking the notational derivative of ΔGc (i.e., an
arbitrary change in Rsol without any physical change in the system so
that [dΔGc/dRsol] = 0), one recovers Eq. (6). By using the surface of
tension Rs

sol, one obtains the Young–Laplace equation [Eq. (7)], and
by substituting in Eq. (A5), one obtains

ΔGc =
1
3

γsAs
=

1
2

V sΔpμ, (A6)

where As
= 4π(Rs

sol)
2 and V s

= (4/3)π(Rs
sol)

3.
Equation (A6) is one of the main equations of CNT, and we

have found it using the thermodynamic formalism of curved inter-
faces in equilibrium in the NVT ensemble. As a matter of fact,
the critical nucleus and surrounding liquid are in thermodynamic
equilibrium of the unstable kind in the NpT ensemble.

It can be shown easily that ΔF(Nsol) (relevant to study equi-
librium) is related to ΔGc (relevant to study nucleation) by the
following expression:39

ΔFsol = ΔGc +N(μL − μ0
L) + V(p0

L − pL). (A7)

What is the right dividing surface to consider in CNT? Let us
assume that γ is known for a given dividing surface in a certain
critical nucleus. Let us assume also that for the thermodynamic con-
ditions (p, T) of the system, γ does not change with the size of the
solid embryo that at some point becomes a critical nucleus. We can
approximate the free energy profile as

ΔG = 4πR2γ −
4
3

πR3Δpμ, (A8)

where Δpμ
= pμ

sol − pL. By setting the derivative with respect to R
equal to zero, we find the condition of maximum (where ΔG = ΔG∗)

R∗ =
2γ

Δpμ . (A9)

If γ, which we assumed to be constant, is γs, then

R∗s
=

2γs

Δpμ = Rs (A10)

as given by the Young–Laplace equation, allowing us identify that
R∗s
= Rs. By substituting in Eq. (A5) the values Rs and γs, we recover

ΔGc since both γ and R refer to the same dividing surface. Hence,
R∗s
= Rs and ΔGc = ΔG∗s. However, if we assume that γ = γe, then

R∗e
=

2γe

Δpμ ≠ Re
≠ Rs (A11)
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as can be seen by comparing with the generalized Young–Laplace
equation. Now, if in Eq. (A5) we use γe and Re, we obtain the right
value of ΔGc, but if we use γe and R∗e, we obtain a value of ΔG in
the maximum ΔG∗e that is different to ΔGc since γ and R do not
refer to the same dividing surface in this case since Re

≠ R∗e. There-
fore, the dividing surface corresponding to the maximum that gives
a consistent value of ΔGc is Rs. Thus, the dividing surface to con-
sider in nucleation when using CNT is the surface of tension Rs

sol and
the interfacial free energy is γs. A sketch of this is shown in Fig. 11.
There, the approximated free energy profile for constant γ = γs (in
blue) and for γ = γe (in red) is shown.

If we substitute Rs given as Rs
= (2γs

)/Δpμ and the correspond-
ing γ = γs in Eq. (A8), we obtain another important equation in
CNT,

ΔGc =
16π(γs

)
3

3(Δpμ)2 . (A12)

If one assumes that the solid is incompressible (so that its
density does not change with pressure), then it can be shown that
Δpμ
≃ ρsolΔμCNT , where ΔμCNT is the difference in chemical potential

between a bulk liquid and a bulk solid having both the same pres-
sure pL. One can then replace Δpμ by its approximate expression in
Eq. (A12) or in Eq. (A5) obtaining

ΔGc =
16π(γs

)
3

3(ρsolΔμCNT)2 , (A13)

ΔGc = γAsol − VsolρsolΔμCNT
= γAsol −NsolΔμCNT . (A14)

In fact, one sees Eq. (A13) more often than Eq. (A12) in CNT
formalism although the latter is, in general, better since it does not
use the incompressibility approximation. In fact, Eq. (A12) was the
one proposed by Gibbs to describe the free energy barrier55,96 and
should be used whenever is possible.

How to feed the formalism of CNT with results obtained from
simulations ? This is the approach of seeding where one determines

FIG. 11. Schematic representation of approximated Gibbs free energy profiles
where γ is assumed to be constant.

that a certain cluster is indeed critical. By using the simple
equation (A6), one could determine the value of the free energy bar-
rier ΔGc. Δpμ can be obtained from the EOS of the fluid and solid
and the value of pcoex. Therefore, the problem is to evaluate the vol-
ume of the critical cluster evaluated at the radius of its surface of
tension, namely, V s. This can be done once we know the number of
particles of the solid cluster, and then V s is given by Nsol/ρsol. Typi-
cally, one uses an order parameter that labels the molecules as solid
or liquid97 and determines the size of the critical cluster Nsol. The
problem arises from the fact that different order parameters pro-
vide different values of Nsol for the same physical cluster. One should
select one that estimates correctly the volume at the surface of ten-
sion of the cluster. When this is done, CNT should reproduce the
results obtained from more rigorous techniques such as umbrella
sampling,76–78 transition path sampling,98 metadynamics,99 or for-
ward flux sampling78,100 for free energy barriers and nucleation rates
J. In short, CNT with adequate feeding (i.e., a correct estimate of the
radius of tension) can provide a good description of nucleation rates
as obtained from more rigorous techniques. However, this requires
a certain tuning of the choice of the order parameter in order to
estimate correctly the radius at the surface of tension of the critical
cluster.

Along similar lines, Reguera and Wedekind101 suggested that a
good order parameter should be the one that satisfies the so called
first nucleation theorem stating that75,102–104

d (kT ln(J))/dΔμCNT
= Nc + c = ρsolV

s
+ c. (A15)

Note that the left-hand side term does not depend on any arbi-
trary choice of surfaces. Both the nucleation rates and ΔμCNT are
experimental and well determined properties. However, the term on
the right-hand side depends on the order parameter. Once again, to
satisfy this theorem, one should use an order parameter that pro-
vides a value of Nsol = Nc able to estimate Rs

sol correctly. The value
of c is usually small and accounts for the change of the kinetic
pre-factor K0 and of γ with ΔμCNT .

In our opinion, some of the arguments often used against CNT
are not fully correct. It is sometimes stated that it assumes that the
solid is incompressible [this criticism is not valid when one uses
Eq. (A12) since this equation already proposed by Gibbs does not
require to assume that], that it is wrong as the properties of the actual
solid are not those of a bulk solid (this criticism is not correct as the
properties of the actual solid never enter in CNT but rather those of
a bulk solid with the same chemical potential of the fluid phase), that
γs is constant (this is not correct as one could and should incorpo-
rate the change of γs with the radius of curvature), or that it does not
describe the complete free energy profile for the formation of a solid
cluster at constant p and T (this is true, but the purpose of CNT is
not to describe this profile but just the value of the free energy bar-
rier at the maximum, namely, ΔGc, which is the property needed to
estimate J). Although for certain cases CNT may fail due to a com-
plex mechanism for freezing,105,106 in most of the cases, it should
provide good estimates of the nucleation rate, provided that one is
able to determine the location of the radius of tension for the prob-
lem of interest. This is the key limitation of CNT as only rigorous
free energy calculations can determine this radius. However, edu-
cated order parameters can provide a reasonable guess transforming
CNT into a useful tool. Gibbs is still guiding us.107
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APPENDIX B: STATISTICAL MECHANICS
VS THERMODYNAMICS

The phase space with all possible configurations in the NVT
ensemble can be partitioned using an order parameter like the num-
ber of solid particles of the largest solid cluster NS. That allows one
to obtain a free energy profile as

F(Ns) = −kT ln(Q(NS)), (B1)

where Q(NS) is the canonical partition function. Therefore, the
value of F(NS) can be obtained rigorously by evaluating the
expression

F(NS) = −kT ln∫ exp(−βU(R3N
))

× δ(N∗S (R
3N
) −NS)dR3N

+ C, (B2)

where N∗S (R
3N
) is the number of particles in the solid cluster for an

instantaneous configuration as given by the coordinates of all par-
ticles of the system R3N and C is a constant. This could be done,
for instance, by using umbrella sampling (US)76,77 or metadyna-
mics.99 However, the implementation is far from trivial. In fact, US
calculations were implemented in the past but only to estimate the
free energy for clusters having around 200 hard sphere particles.76,77

In the case of water, this number increases up to 400 molecules108

for the mW model.109 This difficulty arises because the free energy
barrier increases with the critical nucleus size. The size of the solid
clusters that we were able to stabilize in the NVT ensemble for HS in
our previous study ranges between 2000 particles (the smallest one)
and around 800 000.35 Therefore, the evaluation of F(NS) for these
large values of NS is extremely expensive from a computational point
of view although further work along this line is needed in the future.

Of course, the rigorous free energy of the system should be
obtained by including in the configurational integral all possi-
ble configurations (i.e., F = −kT ln[Q(Ns = 0) +Q(Ns = 1) + ⋅ ⋅ ⋅ +
Q(Ns = N)]. Let us assume that the free energy profile (as a func-
tion of Ns) has one or several local minima. One of them will be
the global minimum. Then, if the global minimum is quite deep in
the free energy landscape, one can approximate the rigorous value
of F by considering only those configurations thermally accessible
(say, within 10–15 kT) from the global minimum. In this case, the
rigorous free energy of the system can be approximated considering
only those configurations close to the global minimum. However, it
is also useful to define the free energy of the system around a local
minimum when there are large free energy barriers separating these
local minima. The system can stay in these local minima for long
times, and one can define the free energy for this metastable con-
figuration, provided that the time to pass the free energy barrier is
much higher than the time to relax and equilibrate around the local
minimum. This is equivalent to why one can define thermodynamic
properties of supercooled water (at moderate supercooling), pro-
vided that the relaxation time is lower than the nucleation time even
though the configurational integral is dominated by the solid config-
urations. Technically, one determines this free energy by considering
only configurations around the local minimum. Therefore a thermo-
dynamic description of these local minima is possible. A schematic
representation of these local minima can be found in Fig. 12. The
dashed areas correspond to configurations accessible from thermal

FIG. 12. Schematic representation of approximated Helmholtz free energy pro-
files against the size of solid spherical (black), cylindrical (red), and planar (green)
nucleus in contact with liquid. The dashed colored regions around the local min-
ima represent fluctuations up to 10–15 kT . There, a thermodynamic description is
possible. The magenta circle represents a configuration far from any minimum so
that a thermodynamic description is only approximated at that point. This configu-
ration is seen from a statistical mechanics point of view as a configuration with little
probability that can be reached via fluctuations at equilibrium and from a thermody-
namics point of view as being that of a system at non-equilibrium as the chemical
potential of both phases is different at this configuration (the difference in chemical
potential being given by dΔF/dNS).

fluctuations of up to 10–15 kT. There, the thermodynamic descrip-
tion is possible since the system stays for a long time. However, let
us focus on the magenta circle. From a statistical mechanics point
of view, that represents a configuration with low probability to be
obtained via fluctuations from the equilibrium system. From a ther-
modynamical point of view, this configuration is not in equilibrium
since the chemical potentials of the solid and the liquid are different
(see Fig. 4).
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