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ABSTRACT
The liquid–vapor transition starts with the formation of a sufficiently large bubble in the metastable liquid to trigger the phase transition.
Understanding this process is of fundamental and practical interest, but its study is challenging because it occurs over timescales that are
too short for experiments but too long for simulations. The seeding method estimates cavitation rates by simulating a liquid in which a
bubble is inserted, thus avoiding the long times needed for its formation. In one-component systems, in the NpT ensemble, the bubble
grows or redissolves depending on whether its size is larger or smaller than the critical size, whereas in the NVT ensemble (i.e., at constant
number of particles, volume, and temperature), the critical bubble can remain in equilibrium. Provided that a good criterion is used to
determine the bubble size, this method, combined with the Classical Nucleation Theory (CNT), gives cavitation rates consistent with those
obtained by methods independent of the CNT. In this work, the applicability of NVT seeding to homogeneous cavitation in mixtures is
demonstrated, focusing on a partially miscible symmetrical binary Lennard-Jones (LJ) liquid at a temperature within the mixing regime. At
the same stretching pressure, cavitation rates are higher in the binary mixture than in the pure liquid due to the lower interfacial free energy
of the mixture. Curiously, the cost of creating a bubble is similar in the pure and binary LJ liquids at the same metastability, Δμ/Δμspin, with
Δμ being the difference in chemical potential between the metastable liquid and coexistence, and Δμspin between the spinodal and coexistence.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142109

I. INTRODUCTION

Understanding the formation of bubbles from metastable liq-
uids is a problem of high interest in many fields, such as sonochem-
istry1 or geology.2 Experiments often provide information about the
cavitation rates, i.e., about the number of critical bubbles formed per
unit of time and per unit of volume, but not about the microscopic
mechanism that leads to their formation. With the aim of under-
standing this process, the Classical Nucleation Theory3,4 (CNT)
was proposed a century ago, initially to rationalize the condensa-
tion of supersaturated vapors, but later it was also applied to other
transitions, including the cavitation of bubbles.5

Molecular simulations have also been extensively used to study
the nucleation of bubbles.6–14 Experiments are often performed at

conditions in which the nucleation rates are too low to be computed
with the typical simulation times; therefore, special simulation tech-
niques such as umbrella sampling,15–18 forward-flux sampling,6,7,19

and transition path sampling20–22 have been employed. Even though
these methods are rigorous, they are often technically challeng-
ing and computationally demanding. As an alternative, during the
last few years, the seeding method has been gaining popularity,
mainly due to the lower computational cost and easier implemen-
tation than the preceding methods, with a focus not only on bubble
cavitation9–11,13 but also on other transitions, such as crystallization
or condensation.23–27 This method consists in inserting a seed of the
stable phase within the metastable liquid and searching for the con-
ditions for which the inserted seed is critical, i.e., it stands at the top
of the free energy barrier that separates the metastable and stable
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phases. For one-component systems, this method can be imple-
mented both in the NpT ensemble, in which the critical nucleus is
in unstable equilibrium, and in the NVT ensemble, in which it is
in stable equilibrium, thus enabling the study of the properties of
the critical cluster over longer times.10,11,13 The information about
the critical cluster size is then combined with expressions from CNT
to calculate the cavitation rates. The application of NVT and NpT
seeding to study the cavitation of bubbles in the truncated and force-
shifted Lennard-Jones (TFS-LJ) liquid has provided rates consistent
with those obtained from other simulation techniques that do not
depend on CNT.9–11

The main goal of this article is to extend the method of NVT
seeding to study the nucleation of bubbles in binary systems. The
applicability of NVT seeding has already been demonstrated for
other transitions besides cavitation, in particular for crystal nucle-
ation, but always for one-component systems.28 NpT seeding was
not used to study bubble nucleation in multi-component systems,
but it has been successfully applied to study the nucleation of crys-
tals in several multi-component systems, such as, for example, the
crystallization of NaCl and ice from aqueous solutions29–31 and the
nucleation of methane hydrates.32 In this work, the applicability of
NVT seeding to multi-component systems will be investigated by
studying bubble nucleation in a partially miscible binary symmetri-
cal LJ mixture. This is one of the simplest mixtures one can think of,
and this makes it an ideal model system in which to investigate the
applicability of NVT seeding before addressing nucleation in more
complex binary systems.

Simulation studies of cavitation of bubbles from binary mix-
tures are rather scarce, and often this phenomenon has been studied
theoretically, for example, in the framework of density functional
theory or in the framework of CNT.33–36 However, the extension of
CNT to multi-component systems has not been straightforward.37–39

Several of the proposed formulations lead to unphysical results,
especially for non-ideal mixtures, which has been ascribed to the fact
that the effect of the curvature on the interfacial free energy can-
not be neglected.39 The nucleation of bubbles in binary mixtures is
very rich and involves many different scenarios depending on the
interaction parameters. Curious phenomena have been found, such
as, for example, an anomalous decrease in the nucleation rate when
temperature increases at constant pressure in mixtures of species of
different volatility.34 However, as our main goal is to illustrate the
applicability of NVT seeding, we will focus on the case of a par-
tially miscible symmetrical LJ mixture at a temperature at which the
liquid is miscible. In these conditions, we expect that the cavitation
behavior follows a similar mechanism as that in the pure system.

II. METHODS AND SIMULATION DETAILS
A. Model

The model system is a binary symmetrical mixture of equal-
sized spheres. The interaction between any pair of molecules is
described by the truncated and force-shifted Lennard-Jones model
(TSF-LJ),6

UTSF−LJ(r) = ULJ(r) −ULJ(rc) − (r − rc)U′LJ(rc), (1)

where r is the distance between two molecules, ULJ(r) is the stan-
dard 12-6 LJ potential and U′LJ(r) is its first derivative, and rc = 2.5σ

is the cut-off distance. We have chosen this short-range model to
avoid dealing with long range corrections, which are problematic
in heterogeneous systems with large variations in density, as the
liquid–bubble systems considered in this work. Besides, there are
numerous studies of cavitation in pure TSF-LJ that can be compared
with the results for the binary symmetrical mixture.6,7,9–11 Here we
consider a mixture of spheres of equal size, σAA = σBB, and equal
mass, mA = mB.

The phase diagram of partially miscible symmetrical TSF-LJ
mixtures (σAA = σBB = σAB ≡ σ and ϵAA = ϵBB ≡ ϵ, and ϵAB/ϵ less
than but close to 1) has not yet been reported to the best of
our knowledge. However, for the standard LJ potential, the global
phase diagram (which delimits regions of parameter space with the
same phase diagram topology) has been calculated40 from the equa-
tion of state proposed by Johnson et al.41 These authors found
that symmetrical LJ mixtures with ϵAB/ϵ > 0.75 exhibit a type II
diagram according to Bolz’s classification.42 This means that in a
pressure vs temperature projection, at low temperature, there is
a liquid–liquid–vapor three coexistence line that, as T increases,
transforms first into a critical azeotropic line and then into a crit-
ical liquid–vapor line. According to Ref. 40, for a mixture with
ϵAB/ϵ = 0.8, T∗ = kBT/ϵ = 0.785 (which is the T∗ for which cavita-
tion was studied for the pure TSF-LJ liquid in previous studies10–12)
falls within the mixing region. As our intention is to study the cavi-
tation of bubbles from a homogeneous binary liquid mixture, we set
ϵAB/ϵ = 0.9 so that the liquid does not undergo demixing at the con-
sidered T∗. In the seeding simulations performed in this work, the
concentration of the liquid is set to the molar fraction xA,l = 0.75,
where the subscript l is added to differentiate the composition of the
liquid from that of the bubble.

Molecular dynamics simulations were performed with the
GROMACS 4.6.7 package (double precision).43 To implement the
chosen model system, we used the argon parameters, i.e., the dia-
meter of the particles is set to σ = 3.405 Å, the energy parameter to
ϵ = 0.996 078 kJ mol−1, and the mass is m = 39.946 u. In the remain-
der of this article, all the quantities will be presented in LJ reduced
units: the volume V∗ = V/σ3, the density ρ∗ = (N/V)σ3 (N is the
number of particles in the system), the temperature T∗ = kBT/ϵ,

the pressure p∗ = pσ3
/ϵ, and the time t∗ = t/τ, with τ =

√

mσ2
/ϵ

= 2.156 ps. In these units, p∗ = 1 corresponds to p = 419 bar.
The pressure was controlled using an isotropic

Parrinello–Rahman barostat,44 with a relaxation time of t = 2 ps
(t∗ ≈ 0.92) and a compressibility of 7 × 10−5 bar−1. For temperature
coupling, velocity rescaling was used with a stochastic term45

and a relaxation time of t = 1 ps (t∗ ≈ 0.46). The temperature
was fixed at T∗ = 0.785. The equations of motion were integrated
using the velocity-Verlet algorithm with a time step of t = 0.005 ps
(t∗ ≈ 0.002).

B. Classical Nucleation Theory
and the seeding method

According to CNT, the nucleation rate, i.e., the number of
nuclei from the stable phase that form in the metastable phase
per unit of volume and per unit of time at constant pressure,
temperature, and composition, can be calculated from3,4,37,39,46,47

J = K exp(
−ΔGc

kBT
), (2)
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where kB is the Boltzmann constant, ΔGc is the Gibbs free energy
barrier for the formation of a critical bubble, and K is the kinetic
prefactor. ΔGc can be computed as

ΔGc = −VΔp + γA, (3)

where V and A are, respectively, the volume and the area of the sur-
face of the critical bubble, γ is the interfacial free energy of the critical
bubble, and Δp = pbubble − pl is the difference in pressure between
the critical bubble and the surrounding liquid. Assuming a spherical
critical bubble of radius Rc, and using the Laplace equation

Rc =
2γ
Δp

, (4)

the free energy barrier can also be expressed as

ΔGc =
2π Δp R3

c

3
. (5)

Note that this expression for ΔGc is formally identical to that for pure
systems.9,46 The main difference with respect to mono-component
systems is the procedure used to calculate Δp. In equilibrium, the
chemical potential of the liquid and the bubble is the same. In pre-
vious studies of pure systems, the pressure inside the bubble was
estimated by integrating the equation of state of a bulk vapor to
find the pressure at which the chemical potential of the bubble is the
same as that of the surrounding liquid.9–11 This calculation is a bit
more complex in the mixture because we have to find the pressure
and composition at which the chemical potentials of the two com-
ponents are equal in both phases. It is also important to point out
that the radius of the critical cluster Rc that enters in Eq. (5) is the
one that satisfies the Laplace equation [Eq. (4)], i.e., the radius at the
surface of tension where the value of γ is a minimum with respect to
formal changes of the dividing surface.48 The kinetic factor can be
calculated from34,46

K = ρl

√

Δp Rc

π
(

xA,v
√

mA
+

xB,v
√

mB
), (6)

where mA and mB are the masses of the particles of types A and B,
xA,v and xB,v are their vapor molar fractions, and ρl is the num-
ber density of the metastable liquid. In our system, the mass of
both particle types is the same (mA = mB = m), and the kinetic
prefactor simplifies down to the same expression as that used for
one-component systems,5

K = ρl

√

Δp Rc

mπ
. (7)

In the seeding method,27 a spherical seed from the stable
phase is inserted into the equilibrated metastable phase. For one-
component systems, simulations of this heterogeneous system can
be performed either in the NpT or NVT ensembles.10,28 In pure sys-
tems, the critical cluster corresponds to a maximum in G at constant
N, p, and T and to a minimum in F at constant N, T, and V (cor-
responding at the same p).10,49 Therefore, it is possible to have the
critical bubble in stable equilibrium with the liquid, allowing one to
study its properties over longer periods of time. The main goal of this
paper is to show the applicability of NVT seeding for binary systems.

In our simulations, the number of particles of each type is kept con-
stant, so strictly speaking, we are working in the NANBVT ensemble
or the NVTxA ensemble, with xA being the overall molar fraction
of component A. However, for simplicity, we will use the notation
NVT (and NpT), keeping in mind that simulations are performed at
constant overall composition. The critical bubble size obtained from
seeding will be used together with Eq. (5) to estimate the free energy
barrier and the nucleation rate using Eq. (2). As the results of seed-
ing are very sensitive to the size of the critical cluster, it is extremely
important to choose a criterion to determine the bubble sizes that
gives rates consistent with those derived from methods that do not
depend on it (Refs. 9 and 10). In this work, we will use brute force
simulations to test two criteria to define the bubble sizes.

III. RESULTS
A. Liquid–vapor coexistence

The first step to study the cavitation in the symmetrical TSF-LJ
mixture is to locate the liquid–vapor coexistence point at the chosen
concentration, xA,l = 0.75. To facilitate the comparison with cavi-
tation in the pure TSF-LJ liquid, simulations are performed at the
same reduced temperature as in previous studies (T∗ = 0.785).10,11

The coexistence point was evaluated by two independent routes: by
direct coexistence simulations50–52 and by calculation of the chemi-
cal potential of the two components in the two phases and imposing
the condition of phase equilibrium.

1. Direct coexistence simulations
In order to locate the liquid–vapor equilibrium using direct

coexistence simulations, we first equilibrate a liquid composed of
2370 particles of type A and 790 particles of type B (i.e., a liquid with
a molar fraction xA = 0.75) at T∗ = 0.785 in the NpT ensemble. The
approximate simulation box dimensions are 4.32 × 4.32 × 8.64 nm3.
Once the liquid is equilibrated, we introduce an empty space next
to the liquid of length about twice its longer dimension (the size of
the simulation box is 4.32 × 4.32 × 30 nm3 when the empty space
is inserted). This system is then allowed to evolve in the NVT
ensemble.

Once the system reaches equilibrium, the coexistence pressure
is estimated from the normal component of the pressure tensor,
which for the conditions just described is p∗lv = 0.0334(3). The equi-
librium composition of each phase is calculated by measuring the
total and partial density profiles along the direction perpendicular
to the interface. We obtained that, after equilibration, the concentra-
tion of particles of type A in the liquid phase increased up to about
xA,l = 0.77(1) and that of the gas phase decreased down to about
xA,v = 0.69(1). This enrichment of component A in the liquid phase
can be easily understood by energetic arguments. As crossed inter-
actions are lower than those between like particles, and interactions
are much more relevant in the liquid phase than in the gas phase (in
which particles are on average far away from each other), it is ener-
getically favorable to reduce the number of crossed interactions in
the liquid by releasing to the vapor a larger proportion of particles of
type B.

As all the cavitation studies presented in this work were per-
formed for a liquid with composition xA,l = 0.75, we repeated the
direct coexistence simulations to try to locate the liquid–vapor tran-
sition when the liquid has a composition closer to this value. As the
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concentration of A in the liquid, xA,l, tends to increase when brought
into contact with vacuum, we now start the direct coexistence sim-
ulations from a liquid phase containing 2323 particles of type A and
837 particles of type B, so that the initial composition of the liquid
is xA = 0.735, i.e., somewhat below the target xA,l = 0.75. This sys-
tem equilibrates at a slightly lower coexistence pressure than before,
p∗lv = 0.0341(3), but with the desired liquid equilibrium concentra-
tion of A, namely, xA,l = 0.75(1) and xA,v = 0.68(1) in the vapor.
Finally, we also checked that the coexistence pressure coincides with
that obtained using the equations of state (EOS) of the bulk liquid
and vapor phases together with the densities and compositions of the
liquid and vapor phases extracted from the bulk region of each phase
(i.e., sufficiently away from the interface) in the direct coexistence
simulations. Using this procedure, we get p∗l = 0.033(1) from the
EOS of the bulk liquid and p∗v = 0.034(1) from the EOS of the bulk
vapor. Both values are in very good agreement with each other and
also with the estimate from the normal component of the pressure
tensor.

The interfacial free energy, γ, at coexistence can be calculated
from the average pressure tensor,48,53–58

γ =
Lz[p̄zz −

p̄xx+p̄yy
2 ]

2
, (8)

where Lz is the length of the simulation box in the direction nor-
mal to the interface, p̄zz is the average of the normal component of
the pressure, and p̄xx and p̄yy are the averages of the tangential com-
ponents of the pressure. The values of the average components of
the pressure tensor do not depend on any particular formulation
of the local pressure tensor.53,57,58 The factor 2 in the denomina-
tor of Eq. (8) takes into account that two liquid–vapor interfaces are
formed by the periodicity of the simulation box.

The coexistence conditions as well as the interfacial free energy
for the TSF-LJ mixture are gathered in Table I. For complete-
ness, we also performed simulations for the pure TSF-LJ system at
T∗ = 0.785, and these results are compared with data from previ-
ous studies6,11 in the same Table. The first observation is that the
liquid–vapor coexistence and the interfacial free energy obtained
by us for the pure system are fully consistent with those found in

the literature.6,11 Comparing now the data for the pure and the
symmetrical TSF-LJ mixtures at the same temperature, it can be
seen that the liquid–vapor coexistence pressure of the symmetri-
cal mixture is higher than that of the pure TSF-LJ system, which is
in keeping with the trends observed in Ref. 40. Finally, the inter-
facial free energy is appreciably lower in the symmetrical TSF-LJ
mixture than in the pure system. The same qualitative behavior was
found in previous work,59 but a quantitative comparison cannot be
made as this work considered a mixture with a different composition
(xA = 0.5) and used a different truncation of the interatomic
potential.

2. Coexistence point from chemical
potential calculation

An alternative method to calculate the liquid–vapor coexistence
point is to find the thermodynamic conditions at which the chemical
potential of the two components is equal in both phases at the same
temperature T and at the same pressure p,

μA,l(p, T, xA,l) = μA,v(p, T, xA,v),
μB,l(p, T, xB,l) = μB,v(p, T, xB,v),

(9)

where μi,α(p, T, xi,α) and xi,α are, respectively, the chemical potential
and molar fraction of component i (i being an A or B component) in
phase α (α being the liquid or vapor phase).

The excess chemical potential of components A and B in a liq-
uid mixture with xA,l = 0.75 and in the vapor with xA,v = 0.60, 0.65,
and 0.70 as a function of pressure were calculated using the particle
test Widom method60,61 as implemented in GROMACS.43 For that
aim, we performed NpT simulations of each phase in a cubic simula-
tion box containing 1000 particles. Typically, the chemical potential
was averaged over 2000 configurations, collected over a MD sim-
ulation run consisting of 2 × 107 steps, after reaching equilibrium.
In each configuration, 10 million particle insertion tests were per-
formed. The total chemical potential was obtained by adding to the
excess chemical potential the ideal contribution, which for com-
ponent i is given by μi,id/(kBT) = ln(xiρσ3

), where xi is its molar
fraction. The thermal de Broglie length is the same in both phases,

TABLE I. Liquid–vapor equilibrium for the pure and the symmetric TSF-LJ mixture at T∗ = 0.785 obtained by direct coexistence (DC) simulations and by computation of the
chemical potentials (CPs). ρ∗l and ρ∗v are the overall densities of the liquid and vapor at coexistence, and xA,l and xA,v are the molar fractions of component A in the liquid and
in the vapor. xA is the global molar fraction in the whole system, i.e., xA = NA/(NA + NB), where NA and NB are the total number of molecules of type A and type B in the
simulation box. p∗lv is the coexistence pressure, which in DC simulations is obtained from the normal component of the pressure tensor. γ∗ is the liquid–vapor interfacial free
energy and is given in LJ reduced units (γ∗ = γσ2/ϵ). The DC simulations labeled Big were carried out in a larger system with 7110 particles of type A and 2370 particles of
type B, in a box of 4.22 × 4.22 × 60 nm3.

System Method T∗ p∗lv ρ∗l ρ∗v xA,l xA,v xA γ∗

Pure LJ DC 0.785 0.0267(1) 0.665(2) 0.044(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.196(4)
Pure LJ DC11 0.785 0.0267 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.193
Pure LJ DC6 0.785 0.026 0.668 0.043 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.204(7)

Symmetric LJ DC 0.785 0.0334(3) 0.639(4) 0.059(4) 0.77(1) 0.69(1) 0.75 0.145(4)
Symmetric LJ (big) DC 0.785 0.0335(3) 0.639(4) 0.059(4) 0.76(1) 0.68(1) 0.75 0.145(4)

Symmetric LJ DC 0.785 0.0336(3) 0.638(4) 0.059(4) 0.75(1) 0.67(1) 0.73 0.142(4)
Symmetric LJ CP 0.785 0.0341(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.75 0.67(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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and its value does not change the chemical potential difference
between them. Here it was assigned to the arbitrary value σ.

The chemical potential of the two components in the liq-
uid and vapor phases is shown in Fig. 1(a). As can be seen, the
chemical potential of component A in the liquid with xA,l = 0.75
(black lines and symbols) crosses the chemical potential of com-
ponent A in the vapor with concentrations xA,v = 0.60 (red),
0.65 (blue), and 0.70 (green) at decreasing pressures, and the
opposite occurs for the minority component B (i.e., the chemical
potential of the liquid crosses that of the gas phase at increas-
ing pressures as xA,v increases). These crossing points fulfill the
condition that the chemical potential of the corresponding com-
ponent is equal in the liquid and vapor phases. The crossing
points for each component can be represented as a function of
the vapor composition, xA,v , obtaining two lines, one for each
component, with opposite slopes [see Fig. 1(b)]. Only at the cross-
ing point between these two lines does the equality of chemical
potentials of each component occur at the same composition of
the vapor (xa,v) and at the same pressure. From this, we obtain
that, at T∗ = 0.785, the symmetrical TSF-LJ liquid with composition
xA,l = 0.75 coexists with the vapor phase with composition
xA,v = 0.67(1) at p∗lv = 0.0341(3). As can be seen in Table I, these
results are in full agreement with those obtained by the direct
coexistence route.

B. Cavitation rate via brute force simulations
As mentioned earlier, one of the difficulties of studying nucle-

ation by seeding is that this method depends critically on having
a good criterion to estimate the size of the critical nucleus. Typi-
cally, this problem has been sorted out by comparing the nucleation
rates obtained with seeding with those coming from more rigor-
ous simulation techniques, such as umbrella sampling, forward-
flux sampling, or brute force simulations.9,10,27 Given that we are
not aware of previous estimates of the bubble cavitation rate for
the symmetrical TSF-LJ mixture, we started by studying cavita-
tion by brute force simulations. At high metastabilities, the free
energy barrier for nucleation decreases, and spontaneous cavita-
tion becomes accessible within the typical length and time scales of
simulations.

For that aim, we performed NpT simulations of a liquid with
composition xA,l = 0.75, containing 18 960 particles of type A and
6320 of type B. At these conditions, we were able to observe spon-
taneous cavitation only at negative pressures. For each considered
pressure, we ran 10 independent simulations. Cavitation events can
be easily detected by an abrupt increase in density. The cavitation
rate can be estimated from these simulations as

J =
1

⟨t⟩ ⟨V⟩
, (10)

where ⟨t⟩ is the average time for observing spontaneous cavitation,
which is calculated simply as the average of the time for cavitation
in the 10 independent simulations performed for each pressure, and
⟨V⟩ is the average volume of the simulation box before the cavita-
tion event. We checked that 10 simulations are enough to obtain an
accurate estimate of the nucleation rate with an error significantly
lower than one order of magnitude by comparing the rate obtained
from 20 independent simulations with those obtained from only 10.

FIG. 1. (a) Chemical potential vs pressure for component A (circles) and B
(squares) in a symmetrical TSF-LJ mixture with ϵ∗AB = 0.9 at T∗ = 0.785. Black
symbols show data for the liquid with xA,l = 0.75 (dashed lines are linear fits), and
red, blue, and green symbols show data for the vapor with xA,v = 0.6, xA,v = 0.65,
and xA,v = 0.7, respectively. (b) Estimation of the coexistence point. The points at
which the chemical potentials of each component in the liquid and vapor at dif-
ferent concentrations are equal are marked as diamonds (purple for A and pink
for B) in (a) and presented jointly in (b). The crossing of these two lines gives the
coexistence point. (c) Calculation of the pressure inside the bubble for system 10.
The pressure and the chemical potential of the surrounding liquid are shown as
vertical and horizontal gray lines in panel (a), respectively. Purple triangles mark
the points at which the chemical potential of A in the vapor is the same as in the
surrounding liquid, whereas red ones are the equivalent points for B. The crossing
point of the two lines gives the equilibrium bubble–liquid conditions.
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TABLE II. Cavitation rate for the symmetrical TSF-LJ mixture with ϵ∗AB = 0.9 at
xA,l = 0.75 and T∗ = 0.785 as obtained from brute force simulations. The rates are
given in LJ reduced units (J∗ = Jσ3τ). For the three lower pressures, averages were
performed over 20 independent simulations, whereas 10 simulations were used for
the two higher pressures.

p∗ ⟨t∗⟩ ⟨V∗⟩ J∗

−0.0300 4.3(4) × 102 42 380(20) 5.5(5) × 10−8

−0.0297 2.6(7) × 103 42 255(4) 9(2) × 10−9

−0.0235 1.7(4) × 104 41 993(3) 1.4(4) × 10−9

−0.0200 2.9(6) × 105 41 746.8(9) 8(2) × 10−11

−0.0177 4(1) × 106 41 599(2) 6(2) × 10−12

The cavitation rates obtained by brute force simulations are given in
Table II.

C. Cavitation rate via NVT seeding
As seen in Sec. II B, the estimation of the cavitation rate requires

to calculate the free energy barrier ΔGc and the kinetic prefactor
K. The cavitation free energy barrier can be obtained from the size
of the critical cluster, Rc, and the pressure difference between the
bubble and the surrounding liquid, Δp [Eq. (5)]. In the next subsec-
tions, we will see how to estimate these properties. It is important to
recall that the expression of the free energy barrier ΔGc, Eq. (5), was
derived under the assumption that the composition of the metastable
phase remains constant during the bubble nucleation. This is true
in the thermodynamic limit, where the size of the critical bubble is

negligible compared to the size of the system (so that the formation
of the bubble causes only an infinitesimal change in the composition
of the external liquid phase). In previous studies of the nucleation
of droplets and crystals from binary mixtures, simulations were per-
formed in the isothermal-isobaric semigrand ensemble (in which p,
T, N, and the chemical potential difference between the two species
are kept constant).18,47,62 As will be shown later, in the liquid–bubble
simulations performed in this work, the composition of the liquid
remains almost unchanged. The reason is that, even though the com-
position of the bubble is different from that of the metastable liquid,
the number of particles in the bubble is so small compared to that in
the surrounding liquid that it barely changes its composition. There-
fore, the use of the NVT ensemble, keeping the overall composition
constant, is justified in this case.

1. Estimation of the radius of the critical cluster, R c

The protocol used to construct initial configurations of the liq-
uid in coexistence with bubbles is as follows: first, we equilibrate the
liquid with a composition xA,l = 0.75 by performing NpT simula-
tions at T∗ = 0.785. In order to be able to accommodate bubbles of
different sizes, we considered two system sizes: a smaller one with
N = 10 000 particles and another one with N = 130 000 that equi-
librated during 1 × 106 MD steps. Bubbles of different sizes are
then generated by removing all the particles from a spherical region
defined in the equilibrated liquid simulation box. The sizes of the
bubbles were chosen so that the ratio between the volumes of bub-
ble and simulation box was within 5%–15% (see Table V). Previous

TABLE III. Details of the systems for which bubbles in equilibrium with the liquid phase were obtained in NVT simulations. Each system is labeled with a numerical index for
further reference. Besides the total number of particles of each type (NA and NB), the pressure of the surrounding liquid p∗l as calculated from the virial is given. Δp∗ is the
difference in pressure between the bubble and the surrounding liquid. The pressure inside the bubble was estimated using the thermodynamic route, i.e., by finding the pressure
and composition for which the chemical potentials of the two components are the same in the liquid and vapor phases. ρ∗l and ρ∗v are the overall densities of the liquid and the
bubble, and xA,v is the composition of the vapor, as obtained from the radial overall and partial density profiles. The composition of the liquid xA,l remains very close to 0.75, with
maximum deviations of 0.003 from this value.

Index NA NB p∗l ± 0.0001 Δp∗ ± 0.0002 ρ∗l ± 0.0002 ρ∗v ± 0.0003 xA,v ± 0.001

0 6 706 2 239 −0.0156 0.0448 0.6110 0.0485 0.676
1 18 173 6 074 −0.0083 0.0383 0.6155 0.0503 0.673
2 17 636 5 852 −0.0068 0.0370 0.6163 0.0507 0.673
3 17 187 5 727 −0.0022 0.0328 0.6191 0.0518 0.672
4 17 918 5 973 −0.0019 0.0326 0.6192 0.0519 0.672
5 17 240 5 738 −0.0004 0.0312 0.6201 0.0522 0.672
6 17 605 5 875 0.0014 0.0296 0.6211 0.0527 0.671
7 16 788 5 583 0.0033 0.0279 0.6222 0.0531 0.671
8 17 319 5 771 0.0034 0.0278 0.6223 0.0532 0.671
9 90 900 30 338 0.0031 0.0285 0.6221 0.0542 0.671
10 90 108 30 063 0.0082 0.0235 0.6249 0.0543 0.671
11 89 191 29 781 0.0107 0.0212 0.6263 0.0549 0.670
12 88 274 29 438 0.0123 0.0197 0.6272 0.0553 0.670
13 87 290 29 072 0.0136 0.0185 0.6279 0.0555 0.670
14 86 219 28 712 0.0147 0.0175 0.6285 0.0558 0.670
15 85 044 28 330 0.0157 0.0166 0.6290 0.0560 0.671
16 82 545 27 468 0.0172 0.0153 0.6297 0.0563 0.671
17 79 572 26 512 0.0184 0.0142 0.6303 0.0566 0.671
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work suggests that within these limits seeding simulations are not
significantly affected by finite size effects.9

These systems containing the artificially constructed bubbles
are then allowed to evolve in the NVT ensemble for 2 × 106 MD
steps. Initially, bubbles grow or shrink until an equilibrium with the
surrounding liquid is established. Note that not all the bubbles will
equilibrate, depending on the choice of the total number of parti-
cles, size of the simulation box, and total density.63 In those systems
in which the bubble remains stable after equilibration, i.e., it does
not completely dissolve in the timescale of our simulation, we esti-
mate their average radius in simulations consisting of 100–400 × 106

MD steps.
As mentioned earlier, in seeding, nucleation rates can change

significantly depending on the criterion used to define the cluster
size.9,29 The radius that enters a CNT is that given by the surface
of tension, i.e., the surface on which the surface tension acts.48,63–65

However, the location of that interface is not known.66,67 For that
reason, in previous implementations of the seeding method, the
radius of the critical nucleus is estimated using a criterion that yields
nucleation rates consistent with those obtained from rigorous sim-
ulations that do not depend on the critical cluster size, such as
umbrella sampling or brute force simulations.9,11,31

Here we employed two criteria used in previous studies to
define the bubble size.9,11 Later, we will compare the cavitation rates
derived from these two alternative criteria to see which one gives
results in closer agreement with those from brute force simulations.
In the first criterion, the radius of the bubble is taken as the equiden-
sity radius,9 which is defined as the distance at which the density
is equal to the average of the liquid and gas densities measured
sufficiently away from the interface (where radial densities remain
constant). The equidensity radius is estimated from the radial overall
density profile measured from the center of the bubble, as shown in
Fig. 2(a). Following previous work,10 the center of the bubble in each
instantaneous configuration is located by searching for the positions
of the minima in the density profiles calculated along the x, y, and z
directions using a bin width of about 0.7σ. The radial density profile
is calculated using a bin of width 0.15σ in the radial direction and
is typically averaged over 1000 independent configurations stored
every 20 000 steps, so that the typical length of the simulations used
for these calculations is 20 × 106 MD steps. The radial overall density
profile is then fitted to the following sigmoid function:

ρ(r) =
ρv,dp + ρl,dp

2
+ (

ρl,dp − ρv,dp

2
) ⋅ tanh[(r − Red)/α], (11)

that has four fitting parameters: ρv,dp and ρl,dp provide estimates of
the densities of the vapor and liquid phases (the subscript dp stands
for density profile), α is a measure of the width of the interfacial
region, and Red is the distance at which the density adopts the aver-
age liquid and vapor densities. The values for ρv,dp and ρl,dp obtained
from this fit are coherent (within their statistical uncertainty) with
the values inferred from averaging the density profiles of the vapor
and the liquid regions, respectively, in Fig. 2. Notice that the error
in the estimation of the vapor density ρv,dp is higher than that of the
liquid density ρv,dp since there are only a few particles in the bubble,
resulting in large fluctuations in the density.

Besides the radial density profile, we also calculated the radial
concentration profile by dividing the density of particles of type A by

FIG. 2. (a) Radial overall density profile and (b) radial concentration profile for the
system labeled with the index 10 in Table III. R∗ = R/σ is the radial distance to
the bubble center.

the total density for each radial distance. A sample profile is shown
in Fig. 2(b). The concentration of particles of type A is higher in the
liquid phase than in the vapor phase, similarly to what was observed
in the direct coexistence simulations. In this case, as the volume of
the gas phase is relatively small, the composition of the liquid phase
remains fairly close to the starting composition, namely, xA,l ≃ 0.75.
However, the molar fraction of A in the vapor phase is again slightly
lower than that in the surrounding liquid (xA,v ≈ 0.66). As explained
earlier, this is due to the fact that the strength of the crossed inter-
actions is 10% lower than that of like-interactions. In general, in all
the NVT seeding simulations performed in this work, the concen-
trations of the bubbles are within xa,v ≈ 0.670–0.673, and that of the
surrounding liquid is typically within xA,l ≈ 0.750–0.753.

Alternatively, one can also resort to the equimolar Gibbs divid-
ing surface as a criterion to define the bubble radius.9,66 The Gibbs
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dividing surface is obtained by assuming that the densities of the liq-
uid and gas phases are constant up to the dividing surface with radius
RG. In multi-component systems, a Gibbs dividing surface can be
defined for each component. Here we define the Gibbs radius using
the majority component A,

NA = VbubbleρA,v + (V − Vbubble)ρA,l, (12)

where Vbubble and V are, respectively, the volume of the bubble and
of the simulation box. Substituting the volume of the bubble by

Vbubble =
4
3

πR3
G, (13)

and reorganizing we obtain that the Gibbs radius can be
estimated as

RG = (
3

4π
NA − L3ρA,l

ρA,v − ρA,l
)

1/3
, (14)

where L is the edge of the simulation box. As mentioned earlier,
we could have also defined the Gibbs radii using the minoritary
component, B. These two Gibbs radii are only identical when the
composition in the liquid and vapor phases are the same. As can be
seen in Tables I and III, in our system, this is neither true at coexis-
tence nor in states where nucleation is studied. As discussed earlier,
as a consequence of the reduced crossed interactions, the minori-
tary component tends to go to the vapor phase, where interactions
are less relevant. From Eq. (12), it is easy to see that this leads to
RG,B > RG,A. However, as can be seen in Table IV, this effect is mild
in our system. RG,B is only about 2% bigger than RG,A. Consequently,
nucleation rates calculated with RG,B are 0–6 orders of magnitude

TABLE IV. Gibbs radii calculated using component A (RG,A), component B
(RG,B), and the average (RG,AB), as well as the corresponding nucleation rates
(J∗G,A, J∗G,B, J∗G,AB) obtained with these radii. In the remainder of the article, RG,A is
designed as RG and J∗G,A as J∗G for simplicity in the notation.

Index R∗G,A R∗G,B R∗G,AB log(J∗G,A) log(J∗G,B) log(J∗G,AB)

0 6.21 6.22 6.21 −13 −13 −13
1 7.34 7.25 7.30 −18 −18 −18
2 7.37 7.73 7.55 −18 −21 −19
3 8.36 8.48 8.42 −23 −24 −23
4 8.43 8.54 8.48 −23 −24 −24
5 8.80 8.97 8.89 −25 −27 −26
6 9.30 9.38 9.34 −28 −29 −29
7 9.82 9.73 9.77 −32 −31 −32
8 9.94 10.08 10.01 −32 −34 −33
9 9.88 10.09 9.98 −32 −34 −33
10 11.72 11.77 11.75 −45 −45 −45
11 13.06 13.07 13.06 −55 −56 −55
12 14.10 14.26 14.18 −65 −67 −66
13 15.03 15.30 15.17 −74 −78 −76
14 15.92 16.20 16.06 −82 −87 −85
15 16.77 17.04 16.91 −92 −96 −94
16 18.32 18.66 18.49 −110 −116 −113
17 19.86 20.16 20.01 −129 −135 −132

smaller than those calculated with RG,A, but, as will be shown later,
this difference is within the uncertainty of our calculations. Since it
seems more sensible to use the majority component, we have chosen
to use RG,A in our calculations. In what follows, for simplicity in the
notation, this radius will be denoted RG.

As can be seen in Fig. 3(a) and Tables V and VI, the Gibbs
radius is systematically larger than the equidensity radius. Taking
into account Eqs. (2) and (5), this means that the Gibbs radius will
lead to a higher cavitation free energy barrier and, consequently, to
a lower cavitation rate than the equidensity radius. The same trend
was also observed in previous seeding studies of cavitation9–11 [see
Fig. 3(a)] and droplet nucleation11 in the pure TSF-LJ system. Gibbs
radii are not provided in Refs. 10 and 11, but they can be estimated
from the data reported in Ref. 11. The results for the pure TSF-LJ
system using the Gibbs radii are also included in Figs. 3 and 5.

Following previous work on one-component systems,10,11,28 we
checked what happens to the stabilized bubbles in the NVT ensemble
when simulated in the NpT ensemble. For that aim, we launched 36
simulations in the NpT ensemble starting from bubble–liquid con-
figurations taken along the trajectory of the system with index 9 in
Table III at the corresponding p∗l (p

∗
l = 0.0031). The outcome of

those simulations is shown in Fig. 4, where the evolution of the total
density of the system in all the NpT simulations is monitored. As can
be seen, in about half of the trajectories, the bubble dissolves, and
in the other half, the bubble grows irreversibly to the vapor phase,
indicating that the cluster is indeed critical.

One might intuitively expect that by virtue of the Gibbs phase
rule, for binary systems, it would be possible to have a critical clus-
ter in stable equilibrium at constant p and T. Indeed, this has been
exploited to not only have a planar interface of a binary system at
equilibrium in the NpT ensemble68,69 but also to stabilize spheri-
cal crystal seeds of NaCl68 in coexistence with a salt solution and
of methane hydrate in coexistence with water with some methane
dissolved.70 However, as we have just seen, the critical bubbles in
the binary symmetrical TSF-LJ mixture cannot be stabilized in the
NpT ensemble. Therefore, why is it possible to stabilize the criti-
cal seed in the NpT ensemble for some multi-component systems
but not for others? Further work is needed to clarify this issue, but
it is important to highlight that in all cases in which stable clusters
in the NpT ensemble were achieved, they had a constant composi-
tion, given by the stoichiometry of the crystals (the NaCl rock salt
and the methane hydrate), whereas in our case, the composition of
the bubbles is not fixed. Small fluctuations in the composition of the
clusters change the free energy barrier for bubble formation, making
the cluster precritical or postcritical at the specified p and T and,
therefore, leading to their dissolution or growth. As for the one-
component systems, we found that the bubbles only remain stable
in simulations at constant volume.

2. Pressure difference between the bubble
and the surrounding liquid, Δp∗

Once we have estimated the bubble size, we proceed to calculate
the difference in pressure between the bubble and the surround-
ing liquid, Δp∗ = p∗bubble − p∗l , which is the other quantity needed
to estimate ΔGc [Eq. (5)]. In this work, we followed two different
routes to achieve this aim. In both approaches, the pressure of the
liquid that surrounds the bubble, p∗l , was taken as the virial pres-
sure in the NVT simulations, as provided by GROMACS.43 Note
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FIG. 3. (a) Radius of the critical bubble as a function of the stretching pressure (measured as p∗l − p∗lv , with p∗lv = 0.0341(3)). Solid black squares were obtained in this
work with the equidensity criterion and solid red squares with the Gibbs criterion. Open symbols show the radii of bubbles for the pure TSF-LJ system reported in the
literature10,11 (the Gibbs radii were calculated in this work with the data provided in those references). (b) Bubble–liquid pressure difference as a function of p∗l − p∗lv . Black
dots were obtained by measuring the density inside the bubble and using an EOS to get the pressure of the bubble, whereas red dots were obtained by looking for the
conditions at which the chemical potentials of components A and B in the bubble and surrounding liquid are equal. For comparison, data from the literature on the pressure
difference between the bubble and the surrounding liquid for the pure TSF-LJ are also shown with blue symbols (calculated by imposing that the chemical potential in the
bubble and surrounding liquid is equal).10,11 Δp∗ shows a fairly linear behavior, and is fitted to Δp∗ = 4.1787 10−5 − 0.902 75 (p∗l − p∗lv) (c) Density of the surrounding
liquid, ρ∗l , as a function of p∗l − p∗lv . Black crosses were obtained by performing NpT simulations of a liquid with xA,l = 0.75. This EOS was fitted to a second degree
polynomial (ρ∗l = 0.638 35 + 0.462 46 (p∗l − p∗lv) − 1.7164 (p∗l − p∗lv)2). For comparison, light blue symbols show the density of the liquid resulting from the fit of the
radial density profile to a sigmoid function vs the virial pressure in the seeding simulations.

that as we are dealing with a heterogeneous system in which the
bubble is in coexistence with the liquid, the pressure is not uni-
form in the system. However, the average of the pressure tensor
in the whole system coincides with that of the external phase, i.e.,
with that of the liquid.71 The pressure of the liquid in all the seed-
ing simulations is reported in Table III. The difference between
the two methods relies on how to estimate the pressure inside the
bubble, p∗bubble.

In the first approach, the pressure inside the bubble is taken
as the mechanical pressure, which can be estimated from the den-
sity and composition inside the bubble together with an EOS for the
bulk vapor phase obtained from simulations [p∗bubble = p∗(ρ∗v , xA,v)].
We checked that the EOS of the bulk vapor shows a mild depen-
dence on composition within the range xA,v = 0.670–0.673. This
is rather convenient, because even though the composition of the

bubbles is not exactly the same in all the seeding simulations, it
remains within these boundaries, and the use of the same bulk
EOS for all the bubbles is justified. Here, the EOS was calculated
by performing NpT MD simulations of a vapor with composition
xA,v = 0.672 and sweeping pressures within p∗ = 0.002–0.033.

In the second approach, we use the thermodynamic route to
estimate p∗bubble. The equilibrium established between the bubble and
the surrounding liquid implies that the chemical potential of each
component is the same in the two phases. The pressure inside the
bubble is the one that fulfills this condition, which can be obtained
from the chemical potentials calculated in Sec. III A 2 and shown in
Fig. 1(a). The procedure is as follows: first, we estimate the chemi-
cal potentials of components A and B in a liquid with xA,l = 0.75 at
pressure p∗l , namely, μA,l(p∗l , xA,l) and μB,l(p∗l , xA,l). The gray verti-
cal line in Fig. 1(a) marks the pressure of the surrounding liquid,
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TABLE V. Cavitation rates, J∗ed , obtained with seeding use the equidensity criterion to
estimate the critical radii along with the interfacial free energy γ∗ed , free energy barrier,
ΔGed/(kBT), and kinetic factor, K∗ed . The fraction of system volume occupied by the
bubble, Vbubble/Vbox , is also given.

Index R∗ed γ∗ed ΔGed/(kBT) K∗ed log(J∗ed) Vbubble/Vbox

0 5.2 0.116 16.4 0.165 −8 0.04
1 6.5 0.125 28.3 0.174 −13 0.03
2 6.7 0.124 29.8 0.173 −14 0.03
3 7.8 0.128 41.1 0.177 −19 0.05
4 7.8 0.128 41.8 0.177 −19 0.05
5 8.2 0.128 46.4 0.178 −21 0.06
6 8.8 0.130 53.2 0.179 −24 0.07
7 9.4 0.131 61.6 0.180 −27 0.09
8 9.5 0.131 62.5 0.180 −28 0.09
9 9.4 0.134 63.1 0.182 −28 0.02
10 11.3 0.133 91.4 0.182 −40 0.03
11 12.7 0.135 115.5 0.184 −51 0.04
12 13.9 0.136 139.5 0.185 −61 0.06
13 14.8 0.137 158.7 0.186 −70 0.07
14 15.7 0.137 181.2 0.186 −79 0.08
15 16.6 0.138 201.9 0.187 −88 0.10
16 18.1 0.138 241.6 0.188 −106 0.13
17 19.7 0.139 288.1 0.189 −126 0.16

TABLE VI. Cavitation rates, J∗G , obtained with seeding using the Gibbs criterion to
estimate the critical radii, along with the interfacial free energy γ∗G , free energy barrier,
ΔGG/(kBT), and kinetic factor, K∗G .

Index R∗G γ∗G ΔGG/(kBT) K∗G log(J∗G)

0 6.2 0.139 28.8 0.181 −13
1 7.3 0.140 39.0 0.183 −18
2 7.4 0.136 45.5 0.186 −21
3 8.4 0.137 53.4 0.185 −24
4 8.4 0.137 54.1 0.185 −24
5 8.8 0.137 60.2 0.186 −27
6 9.3 0.138 65.1 0.185 −29
7 9.9 0.138 76.3 0.187 −34
8 9.9 0.138 75.9 0.186 −34
9 9.8 0.140 69.9 0.185 −31
10 11.7 0.138 102.1 0.186 −45
11 13.1 0.138 126.3 0.186 −56
12 14.1 0.139 152.2 0.188 −67
13 15.0 0.139 177.1 0.189 −78
14 15.9 0.139 198.5 0.189 −87
15 16.8 0.139 219.6 0.189 −96
16 18.3 0.140 264.9 0.191 −116
17 19.9 0.141 309.7 0.191 −135

p∗l , for the system with index 10 (Table III), and the two horizon-
tal gray lines mark the chemical potentials of components A and B
in such a liquid. Second, we look for the crossing points of these
horizontal lines with the chemical potential lines of the correspond-
ing component in the vapor phase at several vapor compositions

FIG. 4. Evolution of the density of the system with time for 36 NpT simulations
starting from different configurations collected along the NVT trajectory of the
bubble–liquid system with index 9 in Table III. As can be seen, in about half of
the trajectories, the bubble dissolves, and in the other half, it leads to the vapor
phase.

(xA,v = 0.60, 0.65, and 0.70). At these crossing points, the chem-
ical potential of each component is the same in the liquid and
in the vapor at concentration xA,v , i.e., they fulfill μA,l(p∗l , xA,l)

= μA,v(p∗v , xA,v) (purple symbols) and μB,l(p∗l , xA,l) = μB,v(p∗v , xA,v)

(red symbols). These crossing points are represented and fitted
to straight lines in Fig. 1(c). Only at the crossing point between
these two lines does the equality of chemical potentials of the two
components in both phases occur at the same composition of the
vapor phase, xA,v , and at the same vapor pressure p∗v , giving the
equilibrium pressure inside the bubble p∗bubble and its composition.
For the system labeled with index 10 and shown in Fig. 1(c), the
pressure and composition of the bubble in equilibrium with the liq-
uid are p∗bubble = 0.0316 and xA,v = 0.671, which compare well with
the values p∗bubble = 0.0309 and xA,v = 0.656 obtained with the first
described method, i.e., using estimates of the density and composi-
tion inside the bubble together with the simulated EOS of the bulk
vapor.

The results of Δp∗ obtained from the mechanical and thermo-
dynamic routes are plotted jointly in Fig. 3(b) for comparison. As
can be seen, both methods give results that are consistent with each
other, but the chemical potential route provides less noisy data than
the EOS route. Consistent with previous findings in the pure sys-
tem, this means that the mechanical pressure is equivalent to the
thermodynamic pressure.11,72 Note that this does not always hold,
as has been shown in a recent study of hard-sphere crystal nucle-
ation.28 The higher statistical uncertainty in the mechanical pressure
is expected, given the difficulty of accurately estimating the den-
sity inside the bubble. The number of vapor particles is very small,
and fluctuations in the number of particles lead to relatively large
changes in the density. Besides, only the results obtained from the
thermodynamic route guarantee that the chemical potentials are the
same in the bubble and the surrounding liquid. For those reasons,
the values of Δp∗ obtained from the chemical potential route are the
ones that will be used in the remainder of the article (these data are
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tabulated in Table III). Curiously, as can be seen in Fig. 3(b), the
difference in pressure between the bubble and surrounding liquid is
very similar in the pure and the symmetrical binary TSF-LJ mixture
when compared at the same stretching p∗l − p∗lv , despite the bubbles
being much bigger in the pure system.

3. Density of the metastable liquid ρ∗l
The density of the metastable liquid, ρ∗l , needed to calculate

the kinetic factor K, Eq. (7), is shown in Fig. 3(b). Again, we tested
two possible ways to estimate this density. In the first one, we used
the EOS of the bulk liquid with xA,l = 0.75 to obtain the density at
the corresponding liquid pressure p∗l , obtained from the virial pres-
sure in seeding simulations. In the second approach, the density is
directly measured from the seeding simulations using the sigmoid
fit. As can be seen in Fig. 3(c), the agreement between both sets
of data is fairly good, except for the point at the lower pressure
and some of the points at the highest pressures. It is also worth
pointing out that the seeding points that exhibit the largest depar-
tures from the EOS are precisely those with a higher Vbubble/Vbox
ratio (see Table V), which might be indicative that these small
deviations arise from finite size effects. In any case, differences are
always lower than 0.3%, which can be taken as an indication that
finite size effects are not very significant in any of our seeding
simulations.

Due to the reduced cross interactions in the mixture, the liquid
density is lower than in the pure system. Therefore, the kinetic factor
K is about 15% lower in the mixture11 both because of the smaller
bubble size and the reduced density of the liquid as compared to
those of the pure system at the same stretching.

4. Cavitation free energy barrier and rate
Now that we have estimated the radius of the critical cluster

(Rc), the difference of pressure inside and outside the bubble (Δp∗),
and the density of the metastable liquid, we can proceed to calcu-
late the free energy barrier for cavitation using Eq. (5). The results
as a function of stretching relative to the coexistence (p∗l − p∗lv) are
shown in Fig. 5(a). As the Gibbs radii are larger than the equiden-
sity radii, the free energy barrier calculated with the Gibbs dividing
surface is larger, with the difference increasing with stretching as the
critical bubble gets smaller. However, both sets of data support the
conclusion that the free energy barrier is significantly lower in the
mixture than in the pure TSF-LJ system when compared at the same
stretching relative to coexistence. Interestingly, a similar trend was
observed in a simulation study on the effect of composition on the
nucleation of droplets from a LJ binary mixture.18

Next, we present the cavitation rates obtained from Eq. (2)
using the data summarized in Tables V and VI. As can be seen in
Fig. 5(b), the small differences in the free energy barrier obtained
with the two defined radii are also visible in the nucleation rates.

FIG. 5. (a) Cavitation free energy barrier
and (b) decimal logarithm of the cav-
itation rate as a function of p∗l − p∗lv .
(c) Interfacial free energy as a func-
tion of the inverse of the radius of the
critical bubble and (d) as a function of
p∗l − p∗lv . In all panels, black squares
show results obtained with the equiden-
sity radius, and red squares with the
Gibbs radius. Solid symbols show data
for the mixture studied in this work, and
open symbols display the results for the
pure TSF-LJ system reported in Ref.
11. The blue triangles in (b) show rates
obtained from brute force simulations. In
(c) and (d), the interfacial free energy at
coexistence for the pure and mixture sys-
tems is represented with a pink diamond.
In (d), γ∗ was fitted to a straight line γ∗
= 0.140 89+0.079 549 (p∗l −p∗lv), which
is used to obtain the CNT-like fit shown
by the red dotted–dashed line in panel
(b). The red dotted lines in panel (b)
delimit the uncertainty in the rate.
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Rates are lower using the Gibbs criteria. Both sets of data give
consistent results with brute force simulations, although those
derived from the Gibbs radii show better agreement. However,
this should be taken with care, because for the pure TSF-LJ sys-
tem, RG also coincides better with brute-force simulations,9 but at
lower metastabilities Red provides rates consistent with umbrella
sampling.11

5. Interfacial free energy
The interfacial free energy can be obtained from the Laplace

equation [Eq. (4)]. The values calculated from the equidensity and
Gibbs criteria are shown as a function of the inverse radius and as
a function of p∗l − p∗lv in Figs. 5(c) and 5(d), respectively. As can be
seen, the extrapolation of both sets of data to an infinite radius gives
coherent results with our calculation of the interfacial free energy at
coexistence, but the values of γ obtained from RG exhibit a consid-
erably smaller slope than those derived from Red, in this latter case
predicting that the cost of creating a bubble–liquid interface is rather
insensitive to the curvature of the bubble, adopting values close to
those of the planar interface from very small sizes.

The values of γ are compared with those of the pure TSF-LJ
system11 in Fig. 5(d). For the pure TSF-LJ system, γ was estimated
using Red,11 because it gave rates coherent with those from umbrella
sampling.9 Consistent with the results in the thermodynamic limit,
the interfacial free energy is systematically larger for the pure system
than for the symmetrical mixture, with a slope intermediate between
those derived from Red and RG in the mixture. The lower interfacial
free energy of the mixture as compared to that of the pure system
explains why cavitation rates are significantly larger in the mixture.

D. Fit of the nucleation rate
The cavitation rate was fitted using CNT expressions as

described in Ref. 10. ΔGc is a function of RG and Δp [Eq. (5)], and the
kinetic factor K depends on RG, Δp, and ρl. As can be seen in Fig. 3,
the dependence of Δp and ρl with pl − plv follows a smooth behavior,
but that of RG is more complex. Therefore, it is convenient to rewrite
ΔG and A in terms of γ, which shows a nearly linear behavior with
pl − plv [Fig. 5(d)]. Using the fits of Δp, γ, and ρl as a function of
pl − plv provided in the captions to Figs. 3 and 5, we obtain J as a
function of pl − plv , which is plotted as a dashed red line in Fig. 5(b).
The error in the rate comes from the uncertainty in the estimation of
RG, Δp and ρl, with the larger error coming from the critical radius.
Assuming that the error in the critical radius is of about 0.3σ and
neglecting the uncertainty in the other quantities, we can estimate
the error in the rate, which is delimited by the red dotted lines in
Fig. 5(b). As can be seen, this fit and its error capture well the vari-
ation of the rates with the stretching. If instead of using the fit of γ
we use the capillarity approximation (i.e., we assume that adopts the
same value as the planar interface), the rate is very similar to that
obtained using the rates calculated from RG, which is expected as
we have seen that γ was rather insensitive to the bubble curvature.
Differences are much larger for the data derived from Red because γ
exhibits a larger dependence on curvature.

E. Cavitation free energy barrier as a function
of metastability

A theoretical work73 has shown that in the pure LJ system,
the nucleation free energy barrier for the formation of bubbles

is the same for all temperatures if compared at the same scaled
metastability, defined as

Xm =
μnucl − μcoex

μspin − μcoex
, (15)

where μnucl, μcoex, and μspin are the chemical potentials of the liquid
at nucleation, coexistence, and spinodal. With this definition, Xm
varies between 0 at coexistence and 1 at the spinodal. Interestingly,
in subsequent work,11 it was shown that the free energy barrier for
droplet and bubble formation as a function of Xm also collapses into
a single curve. In that regard, it seems that the free energy barrier for
nucleation is the same for bubbles and droplets if compared at the
same degree of scaled metastability.

In view of this, it is interesting to compare the free energy bar-
rier for the LJ mixture as a function of Xm with that of the pure
system. For a two component system, the driving force for nucle-
ation depends on the chemical potential of the two components.
Therefore, we define

μ = xAμA + xBμB, (16)

and this is the quantity that will be evaluated at coexistence, at
the nucleation conditions, and at the mechanical spinodal to esti-
mate Xm. For a pure component system, the spinodal is unique
and is defined by the condition (∂p/∂ρ)T = 0. For a binary mix-
ture, one can define two spinodals, the mechanical one given by
(∂p/∂ρ)T,x = 0 and the diffusional one defined as (∂μ/∂x)p,T

= 0.74,75 The location of these two spinodals can be quite differ-
ent.74 Since for pure components we found a correlation between
the free energy barrier and Xm via the mechanical definition of the
spinodal, we shall explore the possibility of a similar correlation for
mixtures when also using the mechanical definition of the spin-
odal. We estimated its location using an approximate method, as

FIG. 6. Cavitation free energy barrier for the TSF-LJ symmetrical mixture with
xA,l = 0.75 as a function of the scaled metastability. Free energy barriers obtained
with the equidensity radius (Red) are shown as black squares, and those obtained
with the Gibbs radius (RG) are shown as red squares. The solid symbols show the
results obtained for the mixture studied in this work, and the open symbols show
the results for the pure TSF-LJ system at the same temperature (T∗ = 0.785)
taken from Ref. 11.
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described in Ref.11. In particular, we performed brute force simula-
tions as described in Sec. III B at decreasing pressures. The spinodal
is located at the highest pressure at which cavitation occurs imme-
diately at the beginning of the simulations, without an induction
period. We estimate that the spinodal is located at p∗ ≈ −0.05. The
free energy barriers for bubble formation obtained either with Red
or RG are plotted as a function of Xm in Fig. 6, together with the
results for the pure TSF-LJ system taken from previous work.11 As
can be seen, the free energy barrier for the pure and the binary sys-
tems adopt quite similar values when compared at the same scaled
metastability. This means that the cost of creating a critical bubble
does not depend much on the interactions (at least for symmetri-
cal mixtures with low deviations of the reduced crossed interactions
from unity as the ones considered), and it is mostly determined by
the scaled metastability.

IV. CONCLUSIONS
In this work, we have applied NVT seeding to calculate bubble

nucleation rates in a partially miscible binary symmetrical TSF-LJ
mixture. The study was conducted at a temperature that falls within
the mixing region of the system, for which there are previously
available data for the pure TSF-LJ model. One aspect that requires
special care when implementing seeding is the choice of an appro-
priate criterion to determine the bubble size. Here, we used both the
equidensity radius and the equimolar (or Gibbs dividing surface)
radius. Consistently with previous work,9,11 the equidensity radii
are systematically smaller than the Gibbs radii, leading to a lower
free energy barrier and a higher nucleation rate. However, what is
the correct value of the critical bubble size? As mentioned before,
the correct radius is the one corresponding to the surface of ten-
sion, and it is the one that enters into CNT expressions. Therefore,
we compared the nucleation rates derived from the equidensity and
the Gibbs surface radii with those obtained from brute force sim-
ulations. Gibbs radii give rates closer to those obtained by brute
force simulations. The same trend was found for bubble nucleation
in pure TSF-LJ, but at lower metastabilities, rates calculated with
the equidensity radii are closer to those obtained by forward-flux
sampling.9 For droplet nucleation in the same system, equidensity
nucleation rates are also in closer agreement with umbrella sam-
pling results.11 However, a recent study using enhancing sampling
methods and transition state theory found results that are in agree-
ment with seeding but obtained from Gibbs radii and concluded that
forward-flux sampling gives systematically higher rates.6,7,12 There-
fore, we can conclude that for the LJ model at high metastabilities,
close to the region where brute force simulations are feasible, the
Gibbs dividing surface radii give the correct nucleation rates. How-
ever, at low metastabilities, where special simulation techniques are
needed, the situation is not yet clear, as there are conflicting results
using rigorous techniques.12 Further work is needed to clarify why
different methods provide different rates at low metastabilities.

In any case, the differences in the cavitation behavior between
the pure and symmetrical mixtures are larger than the differences
between seeding rates using different criteria for determining the
bubble size. Therefore, conclusions about the difference in the cav-
itation behavior in the two systems can be drawn. At the same
stretching, measured as the pressure difference for coexistence, the
critical bubble is smaller in the binary system than in the pure

system. The reason is that the interfacial free energy is about 25%
lower in the mixture than in the pure system, i.e., the free energy
cost of creating a bubble is lower in the mixture. This is, at least
in part, related to the fact that the critical temperature is lower
in the mixture than in the pure system.40,59 Curiously, when com-
paring both systems at the same degree of scaled metastability,
X = (μliq − μcoex)/(μspin − μcoex), the free energy barrier is similar in
both systems. This is an interesting result, as it was found in pre-
vious work that free energy barriers at different temperatures for
bubble and droplet nucleation merged into a single curve when rep-
resented as a function of the scaled metastability.11,73 Our results
suggest that this conclusion can also be extended to mixtures, at least
for small deviations of the crossed interactions from those between
like interactions, as the one considered here.

In the future work, it would be interesting to extend the NVT
method to other systems and transitions, for example, to study
droplet formation in strongly non ideal mixtures or crystallization
from a binary mixture. In principle, NVT should also be applica-
ble in this case; however, some difficulties might arise. For example,
if important fractionation effects occur during nucleation (i.e., the
composition of the nucleated and the parent phase are too differ-
ent), if one wants to keep the composition constant, large simulation
boxes are needed or that other ensembles, such as the semigrand
canonical ensemble, need to be employed. In NVT seeding, the crit-
ical cluster is in equilibrium with the metastable phase, so that the
system evolves until the chemical potentials of the two components
are the same in the two phases. But if one of the phases is solid,
diffusion might be too slow to reach the equilibrium.

It would also be interesting to explore alternative routes to cal-
culate the free energy cost of creating a bubble in the metastable
liquid. A possibly viable method is to introduce an external poten-
tial that creates a bubble in the liquid and design a reversible path
that allows the calculation of the free energy by thermodynamic
integration.
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