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The Helmholtz free energy of a solid can be com-
puted using either the Einstein Crystal [1] or the Ein-
stein molecule method [2]. The two mainly differ for the
choice of the reference system: in the Einstein crystal
the reference system is an ideal Einstein crystal where
the center of mass is kept fixed, whereas in the Einstein
molecule the reference system is an ideal Einstein crystal
where one particle is kept fixed.
The Helmholtz free energy (Asol) of a solid can be writ-

ten as the sum of three terms:

Asol(T, V ) = A0(T, V ) + ∆A1(T, V ) + ∆A2(T, V ), (1)

where A0 is the free energy of the ideal Einstein crys-
tal reference system (including corrections for the fixed
point), ∆A1 is the free energy difference between the
ideal Einstein crystal and the Einstein crystal in which
particles interact through the Hamiltonian of the solid of
interest (interacting Einstein crystal) and ∆A2 is the the
free energy difference between the interacting Einstein
crystal and the solid of interest [3].

A. Analytical calculation of A0

The analytical calculation of A0 is different for the Ein-
stein crystal and the Einstein molecule as depends on the
chosen reference system. In the Einstein crystal method,
A0 contains the analytical free energy of an ideal Ein-
stein crystal with fixed center-of-mass and the free en-
ergy difference between the solid with and without the
fixed center-of-mass [3]:
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where N is the number of particles, Λ the thermal De
Broglie wave length, β = 1/kBT (with kB the Boltzmann
constant), V the system’s volume and ΛE the harmonic
spring constant. It can be rewriten as:
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Whereas for the Einstein molecule the expression for A0

is:
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The absolute value of A0 ( and therefore of Asol) de-
pends on the value assigned to the thermal de Broglie
wave length. However, phase coexistence properties do
not depend on this value provided that the same value

of Λ is used in all phases. This just reflects the fact that
in classical statistical thermodynamics the values of the
masses do not affect coexistence properties. For this rea-
son it is a common practice to set the value of Λ to an
arbitrary convenient value. In this work we set the value
of the De Broglie thermal wave length (Λ) to σ for the
LJ systems and to 1 Å for NaCl. In any case it is always
possible to use the correct value of Λ = h/

√

2πmkBT in
the calculations.
While A0 can be computed analytically, numerical sim-

ulations are needed to calculate ∆A1 and ∆A2. In this
manuscript we show that this calculation can be imple-
mented either with GROMACS or with LAMMPS.

B. Calculation of ∆ A1 with
GROMACS/LAMMPS

To compute ∆ A1, we suggest the following steps both
in GROMACS and in LAMMPS:

1. We prepare an ideal Einstein crystal with the crys-
talline structure of the solid of interest, that means
ideal gas particles attached to their lattice positions
by harmonic springs.

2. We equilibrate it with GROMACS/LAMMPS fix-
ing either the center-of-mass (Einstein crystal) or
the position of one particle (Einstein molecule)
while letting all particles (Einstein crystal) or
all other particles (Einstein molecule) vibrating
through harmonic springs around their lattice po-
sitions. Both packages allow to ”freeze” either the
center-of-mass of the system or one particle’s posi-
tion.

3. The simulation is carried out in the NVT ensemble
at the temperature and density of interest, and we
recommend to store around 104−105 configurations
of the trajectory to properly compute the ensemble
average.

4. ∆ A1 is computed as:

β∆A1 = βUlattice − ln 〈exp [−β(Usol − Ulattice)]〉Ein−id
(5)

where Ulattice is the potential energy of the per-
fect lattice, which can be estimated running GRO-
MACS/LAMMPS for a perfect lattice using just
one MD step and zero as the time step, and Usol is
the potential energy of the instantaneous configu-
ration; evaluated using the intermolecular potential
of interest.

Splitting the calculation of ∆A1 and ∆A2 allows to
choose the proper value for the harmonic spring constant
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ΛE . As an empirical rule, we suggest that a good choice
of ΛE is the one that leads to a value of ∆A1 approxi-
mately 0.02 NkBT higher than the lattice energy Ulattice.
This procedure is important because the latest release of
GROMACS does not incorporate yet the Hamiltonian in-
tegration, available in the latest release of LAMMPS but
only for simple potentials.

C. Calculation of ∆ A2 with
GROMACS/LAMMPS

We then evaluate ∆ A2 in a NVT ensemble as

∆A2 = −
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where the integrand is simply the mean square displace-
ment of each particle from its lattice position. This
term can be easily obtained with GROMACS/LAMMPS
commands, such as position-restraint/ fix spring/self ,
respectively, that apply a spring force on each par-
ticle to tether them to their initial position. From
the calculation of the total harmonic energy it is pos-
sible to compute the mean square displacement for
each value of the spring constant (Λ′

E). In fact
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, the mean square displace-

ment is simply obtained by dividing Upos−rest by either
Λ′

E or k′/2 (notice that Λ′

E=k′/2). The maximum value
of Λ′

E used in the calculations is denoted as ΛE whereas
the maximum value of k′ used in the calculations is de-
noted as k. Notice that depending on the program and
algorithm one should use either Λ′

E or k′ in the input
files. We then compute the integral in Eq.6 using the
Gaussian quadrature method with 15 values of Λ′

E for
the LJ system and 12 for the NaCl system. When im-
plementing the Einstein molecule with LAMMPS we did
not use the fix self spring command but rather prepared
the initial configuration with ”ghosts” atoms at the lat-
tice positions, tethered to the real atoms via harmonic
springs with constant Λ′

E .

D. Details on the implementation of the Einstein
crystal and Einstein molecule with

GROMACS/LAMMPS

When implementing the Einstein crystal method, we
need to simulate the system with fixed center-of-mass and
the latest releases of GROMACS and LAMMPS can eas-
ily keep fixed the system’s center-of-mass. Whereas when
implementing the Einstein molecule method, we simulate
the system keeping fixed the position of one particle, that
can be freezed both in GROMACS and in LAMMPS: this
let the center-of-mass freely move, as shown in Fig. 1 for
MC and GROMACS.
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FIG. 1. Center-of-mass displacement of the LJ/STS system
for the spring constant Λ′

E =27.08 kBT/Å
2 obtained with MC

(left-hand side) and GROMACS (right-hand side) obtained in
Einstein molecule calculations.

We have simulated Lennard-Jones and JC-NaCl
systems in a NVT ensemble using the v-rescaling
thermostat[4] and tested that the results obtained do not
depend on the chosen relaxation time of the thermostat
τ (up to τ=2 ps). In order to show that our results are
independent on the chosen thermostat, we have also sim-
ulated the LJ/STS using the Langevin thermostat [5] and
found no effect on the final calculation of the free energy
of the solid. However, we have not equilibrated the sys-
tem with a Nose-Hoover thermostat [6, 7] since it presents
a pathological behavior with harmonic potentials[7].
It is important to choose the time step carefully when

computing ∆ A2 or ∆ A1. The period of an oscillation
of an ideal harmonic spring is a function of the spring
constant,
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We use a Molecular Dynamics time step of 2.5 - 5.0 fs,
since that allowed a correct sampling of the vibrations
for the strengths of the springs used in this work.

I. SIMULATION DETAILS

Free energy calculations for the solid were performed
in the NVT ensemble. We carry out free energy cal-
culations for a spherically truncated and shifted (STS)
and for spherically truncated (ST) LJ systems at T ∗ = 2
and ρ∗ = 1.28. Free energy calculations were performed
for the fcc solid structure. For the STS system we used
256 atoms along with the cutoff distance rc = 2.7σ. For
the ST system we used 1372 atoms along with the cut-
off distance rc = 5σ. Simulations results for the LJ
potentials (both STS and ST) were implemented using
a LJ-Argon system (with σ = 3.405Å, ǫ/k = 120K
and m = 39.9 g/mol). The maximum value of the
spring constant was ΛE = 2500kBT / Å2 for the LJ sys-
tems. For NaCl the free energy of the solid was obtained
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from NVT runs for a system containing 1000 ions and
using the Joung-Cheatham-NaCl model (optimized for
SPC/E water). Calculations were performed at 298 K
and V = 24.13 nm3 ( which correspond to the average
value of the volume of the system for the considered sys-
tem size and model obtained from a previous NpT run at
298 K and 1 bar). The maximum value of the spring con-
stant for NaCl was ΛE = 4000kBT / Å2 . For the NaCl
system, Ewald sums were used (Particle Mesh Ewald,
PME [8]) truncating the Coulombic real space contribu-
tion and the LJ part of the potential at rc = 14 Å .
For convenience we have assigned to both Na and Cl the
mass of Ar. Whenever we consider a spherically trun-
cated potential (ST LJ or NaCl), we add the long range
corrections to the LJ part of the potential to both en-
ergy and pressure. Thus our aim was to estimate the
free energy of the untruncated potential rather than of
the truncated system itself.
We simulate the systems running NVT Molecular Dy-

namics for about 10 ns with a time step of 0.0025-0.005 ps
(i.e four or two million time steps). For the LJ systems
the time step in reduced units is of about τ∗ = 0.001, and
we have discarted the configurations that corresponds to
the first 2 ns of each trajectory. Simulations were carried
out in Intel(R) Xeon(R) CPU X5650 @ 2.67GHz pro-
cessors, which means about 255 ns/day for the 256 LJ
atoms system, and 17 ns/day for the 1372 LJ atoms sys-
tem and the JC-NaCl system. We stored configurations
every 100 MD steps, which corresponds to approximately
105 independent configurations per simulation run. The
temperature was keep constant using the velocity rescale
thermostat [4] with a relaxation time of 1 ps.

II. MC VERSUS GROMACS/LAMMPS

To confirm the validity of the free energy calculations
obtained with the Molecular Dynamics packages in an
NVT ensemble, we simulate the same systems with a
NVT Monte Carlo code. For the calculation of ∆A2

we need to compute the mean square displacement of
each particle from its lattice position. Representing the
time evolution of the mean square displacement for the
LJ/STS computed via MC or GROMACS, we show that
both the average and its fluctuations are very similar with
the two codes.
It has been shown so far that the free energies ob-

tained from MC and MD agree within their respective
error bar. This is true for all the results presented in
Table I of the main paper. However, we would like to
point out that a somewhat larger deviation (of the order
of 0.06 NkT) was observed between MC and MD for a
LJ ST system truncated at rc = 2.7σ (data not shown).
The deviation is not large but is clearly visible. It is well
known that some issues arise when comparing the prop-
erties obtained from MC to those obtained from MD for
a truncated potential[9, 10]. For instance, if one is inter-
ested in the pressure of the truncated potential itself then
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FIG. 2. Mean square displacement of the LJ/STS system
for Λ′

E=27.08 kBT/Å
2 as obtained with MC and GROMACS

from Einstein molecule calculations.

one should add an impulsive correction to the traditional
virial expression to evaluated the pressure within a MC
NVT run[9, 10]. However a long tail correction is added
rather than an impulsive correction in MC runs since one
is usually more interested in estimating the properties
of the untruncated potential rather than the truncated
potential itself. There is no problem in including this
long tail correction also in MD runs, and in fact this was
done in this work. However the discontinuity of the po-
tential at rc generates impulsive forces that can not be
handled in MD programs as GROMACS/LAMMPS that
are based on a Taylor expansion of the particle position.
Thus, we recommend to use relatively large system sizes
and large cut-off’s (above 4.5σ) for the calculation of free
energy of solids when using MD to minimize both system
size effects and the problem of the discontinuity of the
potential at the cutoff.
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