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ABSTRACT
In thiswork,wepresent a simplemathematical expression for a continuous versionof the square-well
(SW) discontinuous potential of variable range (λ ≥ 1.05). This expression canbeuseful in theoretical
statistical mechanics methods and specially in conventional molecular dynamics (MD) simulations.
To illustrate the latter point, the continuous version of some SW potentials of variable range were
selected and studied with continuousMD. SW single state thermodynamic and structural properties
(vapour, liquid and solid), vapour–liquid phase diagrams and surface tensions accurately reproduce
available simulation data obtained by Monte Carlo and discontinuous MD simulation methods. This
expression canbe easily implemented in popular simulationpackages (GROMACS, NAMD, CHARMM,
DL_POLY, EXPResSo, HOOMD, TINKER, ls1 mardyn, etc.) that can be useful to study more complex
systems. Besides we also present a continuous version for the square-shoulder potential.
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1. Introduction

In Statistical Mechanics, hard-sphere (HS), square-well
(SW), square-shoulder (SS) potentials and some of their
combinations (discrete potentials) have been used as toy
models in the context of fluids due to their mathemat-
ical simple expressions. Discrete potentials simplify the
calculus of terms that appear in the evaluation of Virial
Coefficients, Perturbation Theory and Integral Equations
Methods [1–18]. Although they are simple anddiscontin-
uous potentials, they have been used as effective models
for real systems, such as in the modelling of colloids

CONTACT A. L. Benavides alb@fisica.ugto.mx División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas
del Campestre, CP 37150 León, Guanajuato, México

[19–22] and proteins [23–25]. The SS potential does
not exhibit a vapour–liquid transition; however, it has a
very reach fluid–solid and solid–solid phase diagrams. It
has been shown that this potential predicts that parti-
cles can self-organise in highly complex, low-symmetry
lattices, forming clusters, columns or lamellae, and at
high pressures they form compact and high-symmetry
structures [26,27]. A very interesting application has
been recently presented by Pattabhiraman et al. [28]
using the SS model potential while designing photonic
crystals. Besides stripe patterns have been observed for
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two-dimensional SS potentials [29–31]. In two dimen-
sions, SW potentials also exhibit a variety of different
phases: vapour, liquid, hexatic and triangular solid and
a non-compact solid with square-lattice symmetry [32].

Simulation studies for discrete potentials have been
mostly performed with Monte Carlo (MC) techniques
[33–54]. Due to their discontinuities, these kinds of
potentials have not been treated by conventional molec-
ular dynamics (MD) simulation that is a very impor-
tant technique that has been applied to many continuous
potentials and successfully incorporated in more gen-
eral popular simulation packages (GROMACS [55–61],
CHARMM [62], DL_POLY [63], EXPResSo [64], IMD
[65], LAMMPS [66], ls1 mardyn [67], NAMD [68], TIN-
KER [69], HOOMD [70,71], etc.) to study a great vari-
ety of complex systems. Besides, MD simulation has the
advantage over the MC method that one can obtain the
transport properties of a given potential.

The discontinuousmolecular dynamics (DMD) [32,44,
72–75] is an alternative simulation method that avoids
solving the Newton equations for model potentials with
discontinuous forces. Instead they solve collisions among
particles while obeying the conservation of energy and
momentum of the system. However, the DMD method
has not been implemented until recently to standard
simulation packages for event-driven MD [76], and its
use has been mostly limited to homemade simulation
programs in the context of particular problems.

A way of avoiding the difficulties of treating hard-
core potentials withMD simulations is the constant force
approach method proposed by Orea and Odriozola [77].
This method consists in replacing the hard-core discon-
tinuity by a very steep linear function whose derivative is
a constant. The extension to a potential with more than
one discontinuities has been recently done by Padilla
and Benavides [78] and results for discrete potentials are
promising.

Another way of handling the discontinuity of the HS
potential in manyMD simulations has been done replac-
ing it by continuous functions of the form 1/rn, with n
being an integer whose value is around 60. An improved
continuous version of an HS potential was developed by
Jover et al. [52]. They proposed a continuous version of
the HS potential, the so-called pseudo-HS potential, that
is a cut and shifted version of a Mie potential with expo-
nents (50,49). They have been able to accurately repro-
duce structural and thermodynamic properties when
compared with available simulation data for the original
HS system. Besides, the pseudo-HS potential has been
successfully applied to study the liquid–solid coexistence
using the MD direct coexistence method [79].

Other discontinuous potentials that have been
expressed as continuous functions to be studied by MD

simulations are the SS [80,81], the discrete potentialmade
of an SS plus an SW potential (SS+SW) by Franzese
[82] and the smooth version of the Jagla potential, the
Fermi-Jagla potential [83].

In this work, we will provide an analytic continuous
expression for an SW potential of variable range that can
be used in conventional MD simulations. We describe
the details of this potential in Section 1. MD simulation
details are given in Section 2. Results of thermodynamic
and structural properties and vapour–liquid phase dia-
grams for SWpotentials of rangesλ =1.25, 1.5 and 2.0 are
presented in Section 3 and compared with the available
SW simulation data. As a corollary we present a contin-
uous version of the SS potential. Finally, in Section 4 we
give the main conclusions of this study.

2. Continuous SW potential

The simplest model of a fluid whose particles interact
with repulsive and attractive forces is the SW potential,
USW , that in reduced units can be expressed as

uSW(x) =

⎧⎪⎨
⎪⎩

∞ 0 < x ≤ 1,
−1 1 < x ≤ λ,
0 x > λ,

(1)

where uSW(x) = USW(x)/ε, ε is the depth of the SW
potential, x = r/σ the reduced interparticle distance, σ
the molecular diameter and λ the SW potential range.

A continuous version of the reduced SW poten-
tial, hereafter referred as continuous square-well (CSW)
potential, takes the form:

uCSW(x) = 1
2

((
1
x

)n
+ 1 − e−m(x−1)(x−λ)

1 + e−m(x−1)(x−λ)
− 1

)
, (2)

where n and m are free parameters characterising the
softness of the repulsive and attractive parts of the
potential, respectively. The CSW potential is continu-
ous over all domains. By construction this potential is
zero in x=1; it has only one minimum (−1) in approxi-
mately x = (λ + 1)/2.Moreover, the reducedCSW force,
fCSW = FCSWσ/ε, is also continuous as is required in
traditional MD simulations:

fCSW(x) = n
2

(
1
x

)n+1
− m(2x − λ − 1)e−m(x−1)(x−λ)

(1 + e−m(x−1)(x−λ))2
.

(3)
For all cases considered in this work, the exponents

were selected, n=2500 and m=20000 (see Figure 1).
These such big exponent values reproduce the expected
natural form of a continuous version of the potential
and force simultaneously for SWpotentials of ranges λ ≥
1.05. Besides for these selected values the potential tends
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Figure 1. CSW and SW potentials for the case of SW range λ =
1.5. In the top panel, the potentials are shown and, in the bottom
panel, their corresponding forces as a function of the interparticle
distance x. In this figure, we have used n= 400 and m= 400 to
amplify the softness of the CSW potential since for the exponent
values used in this work (n= 2500 and m= 20000) the CSW and
SW potentials are almost identical in the scale of the plot.

to zero at a slightly greater distance than the SW range.
The same expression, Equation (2), can still be used for
smaller ranges (1 < λ < 1.05) but using higher values for
n andm. The continuous HS case is only recovered in the
limit when λ → 1 andm → ∞.

3. Simulation details

We performed MD simulations by using the GRO-
MACS package version 5.1. We have chosen argon
simulations with particle diameter σ = 0.3405; nm,
energy minimum ε = 0.996078; kJ/mol and atomic mass
m=39.948 u.Although this package can be used forwell-
known continuous potentials, such as Lennard-Jones,
Coulomb and Buckingham potentials, it can also be used
for other types of interactions that can be presented in
an input table with a very fine discretization. We have
done this for the CSW potential with an spacing gap of

0.00001 nm to reproduce the continuous forceminimum.
In contrast to the SW potential that has a fixed range,
for the CSW potential it is necessary to define a cut-off
distance. In GROMACS distance units, it was chosen at
the distance for which the potential has an approximated
valueUCSW(rc) ≈ 10−15 kJ/mol. For instance, for a CSW
potential of range λ = 1.5, the cut-off is r=0.512 nm
(approximately 1.504σ ) with n=2500 and m=20,000.
This criterion for defining the CSW range slightly over-
estimates the corresponding SW range. We will refer to a
CSW potential of a given range λ that corresponds to the
SW range that we want to mimic, although the CSW has
a slightly greater range. We included in Appendix 1 the
program in Fortran that can make the GROMACS input
file table_Ar_Ar.xvg.

In all NVT simulations, the leap-frog integrator
algorithm [84], the Nosé–Hoover thermostat [85] (cou-
pling constant τ = 2 ps) and a time step δt = 0.0001 ps
were used. In Appendix 2, we give a brief analysis of the
time step selection according to the n andm values.

Periodic boundary conditions in all directions and a
neighbour list to speed up the calculation were imple-
mented.

To compare with the available simulation data, our
results will be presented in the following reduced units:
density ρ∗ = ρσ 3, temperature T∗ = kBT/ε, excess
internal energy u = U/NkT, reduced pressure P∗ =
Pσ 3/ε and compressibility factor Z = P∗/ρ∗T∗.

Supercritical state properties were calculated from
NVT simulations with a starting crystalline array con-
formed by 1000 particles. To equilibrate the system, 2 ×
106 time steps were used and to take averages 2 × 107
steps divided into 10 sub-blocks.

To calculate the vapour–liquid coexistence, we have
carried out NVT simulations in a parallelepiped simu-
lation box with Lz > Lx = Ly [86,87]. We started with a
cubic crystalline array with 2000 particles at a reduced
density ρ∗ = 0.8, and the liquid state at the desired tem-
perature is reached after 106 steps.

Subsequently, Lz was elongated with the ratio Lz/Lx =
4 where Lx ≈ 13.57σ , and a second simulation was per-
formed with 4 × 107 steps in order to allow the phase
separation. The coexistence densities were obtained from
the density profiles ρ(z) = 〈N(z)〉/δV , where 〈N(z)〉 is
the average number of molecules within a slab of volume
δV calculated every 10,000 steps in each slab of volume
δV = Lx × Ly × (Lz/500).

Extended simulations were employed (2 × 108 steps)
to determine the surface tension and results were com-
puted via the components of the pressure tensor:

γ ∗ = L∗
z
2

[
〈P∗

zz〉 − 1
2
(〈P∗

xx〉 + 〈P∗
yy〉)

]
, (4)
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where γ ∗ = γ σ 2/ε is the reduced surface tension, L∗
z =

Lz/σ , and 〈P∗
xx〉, 〈P∗

yy〉 and 〈P∗
zz〉 are the average compo-

nents of the pressure tensor in the x, y and z directions,
respectively.

4. Results

4.1. Single-state properties

We will test the performance of the CSW against SW
available simulation data.

As a first test of the CSW potential, we have carried
out single-state NVT simulations for the most famous
case studied in the context of simple fluids, λ = 1.5,
at supercritical states (SW potential of range λ = 1.5
has a reduced critical temperature value around 1.22
[36,38,40,41]). In Figure 2, CSW potential reduced inter-
nal energies and compressibility factors as a function

Figure 2. Supercritical excess internal energy, U/NkT (top) and
compressibility factor, Z (bottom) as a function of reduced tem-
perature for the CSW potential of range λ = 1.5 at a reduced
density ρ∗ = 0.8. Results of this work are shown with circles and
with triangles the SWMC simulation data from [39].

of temperature, u(T∗) and Z(T∗), for ρ∗ = 0.8 are pre-
sented. As can be seen the CSW predictions are in good
agreement with SW simulation data reported by Labík
et al. [39].

For colloids models it is also important to consider
cases of shorter ranges [24,88,89], so we also compared
the reduced excess internal energies for a CSW poten-
tial of range λ = 1.25 at ρ∗ = 0.6 for several super-
critical temperatures (the critical temperature T∗

c ≈ 0.76
[36,41]), and these are presented in Figure 3. Although
the Patel et al. [47] reported values have large errors
(not shown in this figure), our simulation data are in
agreement with their central values.

In order to compare the structural properties of CSW
and SW potentials, we have calculated the radial distri-
bution function g(x). As can be seen from Figure 4, the
CSW potential reproduces the structural behaviour of an
equivalent SWpotential of range λ = 1.5 atT∗ = 2.0 and
ρ∗ = 0.8, as reported by Henderson et al. [33], including
the contact values.

To test the performance of this CSW potential in
the fcc solid phase, we present in Table 1 a compari-
son of the internal energy and pressure predicted for
an SW of range λ = 1.5 by Young and Alder [90]. As
can be seen the agreement of the pressures is quite rea-
sonable, considering that in MC simulation the pres-
sures are indirectly obtained through extrapolations
of the contact values of the radial distribution func-
tions. For the internal energies, the agreement is very
good. The errors in the internal energies and pressures
were estimated calculating the standard deviation of
the average properties of five independent simulation
runs.

Figure 3. Internal energies for a CSWpotential of rangeλ = 1.25
at ρ∗ = 0.6 for several supercritical temperatures obtained in this
work (circles). Simulation central data (squares) from [47] are also
included. Our simulation error bars are smaller than the symbol
size used.
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Figure 4. CSW potential radial distribution function for the case
λ = 1.5 at temperature T∗ = 2.0 and reduced density ρ∗ = 0.8.
Continuous lines are predictions from this work and filled dia-
monds are SWMC results from [33].

Table 1. Comparisonof SW (λ = 1.5) andCSWreducedpressures
and internal energies in the solid phase (fcc structure) at a reduced
density ρ* = 1.285649 for three different temperatures.

Potential T∗ P∗ U/Nε

SW 0.7 18.55 −8.95
CSW 0.7 18.82 (8) −8.93 (1)
SW 1.0 29.47 −8.92
CSW 1.0 29.61 (11) −8.89 (1)
SW 2.0 68.65 −8.87
CSW 2.0 68.17 (14) −8.79 (1)

Note: The SW results are from [90].

4.2. Vapour–liquid coexistence

NVT simulations were carried out to compute the
vapour–liquid coexistence densities for several temper-
atures for a system of particles interacting with the CSW
potential (Equation (2)) with ranges λ = 1.25, 1.5, 1.75.

In Table 2, the simulation data for liquid and vapour
coexistence densities are presented.

The orthobaric densities were obtained from the den-
sity profiles along the z∗ axis, and in Figure 5, the dis-
tribution is shown for a CSW potential of range λ = 1.5
for temperatures in the interval [0.8, 1.15]. The highest
temperature was simulated with 5000 particles, instead
of 2000, to have a liquid slab of similar size. In Figure 6,
a good agreement with previous simulation data for
the vapour and liquid coexistence densities from differ-
ent authors and different simulation techniques can be
noticed.

The vapour–liquid coexistence for a CSW potential
of ranges λ = 1.25 and λ = 1.75 are shown in Figures 7

Figure 5. Density profiles for theCSW forλ = 1.5 for several tem-
peratures (from top to bottom in the liquid region as listed in the
figure legend).

Table 2. Vapour–liquid coexistence properties for CSW potentials of different ranges.

T∗ ρ∗
v ρ∗

l P∗
v γ ∗

λ = 1.25
0.62 0.0239 (09) 0.8597 (54) 0.0137 (14)
0.64 0.0310 (11) 0.8387 (69) 0.0173 (11)
0.66 0.0391 (14) 0.8213 (61) 0.0219 (17)
0.70 0.0696 (18) 0.7567 (43) 0.0355 (19)
λ = 1.5
0.80 0.0057 (05) 0.7310 (39) 0.0040 (16) 0.58 (1)
0.85 0.0092 (05) 0.7130 (39) 0.0070 (15) 0.49 (1)
0.8774 0.0120 (06) 0.7011 (29) 0.0097 (21) 0.45 (1)
0.90 0.0144 (07) 0.6932 (38) 0.0106 (21) 0.43 (1)
0.95 0.0217 (07) 0.6713 (38) 0.0156 (24) 0.35 (1)
1.00 0.0292 (08) 0.6477 (34) 0.0242 (21) 0.27 (1)
1.05 0.0438 (12) 0.6182 (33) 0.0351 (25) 0.20 (1)
1.10 0.0618 (20) 0.5828 (35) 0.0478 (18) 0.14 (1)
1.15 0.0917 (23) 0.5342 (27) 0.0646 (12) 0.07 (1)
λ = 1.75
1.20 0.0084 (04) 0.6649 (37) 0.0090 (35)
1.40 0.0245 (08) 0.5928 (38) 0.0283 (31)
1.60 0.0582 (13) 0.5083 (34) 0.0628 (32)

Notes: Numbers in parentheses indicate the standard deviation of the properties in the last two digits, except for the reduced surface tension,γ ∗ , for which the
error is in the last digit. The errors on the surface tensions represent the error of most of the cases from 4 independent runs.
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Figure 6. Vapour–liquid phase diagram for an SW potential of
range λ = 1.5. CSW results (circles) and SW simulation data from
[38] (squares), [41] (diamonds), [44] (triangles up), [43] (triangles
down) and [91] (triangles left) are presented. Error bars are smaller
than symbol sizes.

Figure 7. Vapour–liquid phase diagram for an SW potential of
rangeλ = 1.25 as obtained in this work for the CSWpotential (cir-
cles) and SW simulation data from [38] (squares), [41] (diamonds)
and [49] (triangles). Error bars are smaller than symbol sizes.

and 8, respectively. The agreement of the simulation data
obtained in this work and available simulation data of
other authors is good for the states presented.

Reduced vapour pressures were computed using the
zz-component of the tensor pressure, P∗

v = P∗
zz, for CSW

λ = 1.5. As can be noticed from Figure 9 the simulated
pressures are in agreement with MC data from [43,44].
The simulation vapour pressures are included in Table 2.
The standard deviations were obtained, after the first
0.5 ns, by using the averages of 10 sub-blocks of 0.35 ns
each .

Lastly, we have carried out longer simulations of
20 ns to compute the surface tension of a CSW poten-
tial of range λ = 1.5. This property was obtained, as
mentioned in Section 3, from the pressure components
(Equation (4)) which were averaged every 4 ns. The final

Figure 8. Vapour–liquid coexistence for an SWpotential of range
λ = 1.75. CSW potential (circles) and SW simulation data from
[38] (squares), [41] (diamonds) and [44] (triangles up) are pre-
sented. Error bars are smaller than symbol sizes.

Figure 9. Reduced vapour pressures for an SWpotential of range
λ = 1.5. Simulation predictions for the CSW potential are shown
(circles). Data for the SW potential from [43] (squares) and [44]
(triangles up) are included.

mean surface tensions are presented in Table 2, plotted
in Figure 10 and contrasted with previous results for an
SW fluid. As can be seen the predictions are in a good
agreement with the available simulation data.

It is important to remark that although this CSW
potential reproduces quantitatively well the discontinu-
ous SW potential properties, it is restricted to the use of
low time step values (0.0001 ps) and thatmakes the calcu-
lations somewhat more expensive from a computational
point of view.

However, there could be also interest in using this
continuous potential expression using lower exponent
values, like, for instance, the ones shown in Figure 1,
(400,400), which also captures the essential characteris-
tics of the SW potential and can be studied using a time
step one order of magnitude greater (see Appendix 2).
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Figure 10. Surface tension for an SW potential of range λ = 1.5.
The corresponding CSW potential results are shown with circles.
SW simulation data from [43] (squares), [44] (triangles) and [46]
(diamonds) are included.

5. Corollary

As a consequence of this work, we found the following
continuous version of the square-shoulder (CSS) poten-
tial that, as mentioned in Section 1, is also a very inter-
esting simple discrete potential that exhibits a rich phase
behaviour that can model real simple and complex sys-
tems [28]. The CSS potential can be written as

uCSS(x) = 1
2

((
1
x

)n
− 1 − e−m(x−a)(x−λ)

1 + e−m(x−a)(x−λ)
+ 1

)
, (5)

where a = 0.99, n = 2500 and m = 20000. A version of
this CSW potential can be found in Figure 11 where it

Figure 11. CSS and SS potentials for the case of SS range λ =
1.5. In this figure, for the CSS potential we have used a = 0.99,
n = 2500,m = 20000 and as can be seen it almost overlap with
the SSpotential. To showanexampleof a softer versionof theCSW
potential we have also included a case with a = 0.99, n = 400
andm = 400.

is compared with an SS potential of range λ = 1.5. As
can be noticed both potentials almost overlap. We also
included another set of parameters for a softer version of
the CSS potential. The exploration of the phase diagram
for this potential will be of interest in future studies.

6. Conclusions

We have presented a simple continuous mathematical
expression for the discontinuous SW potential of vari-
able range (λ ≥ 1.05). MD simulations were used with
this potential and their predictions were compared with
available simulation data (single-state thermodynamic
properties (gas, liquid and solid), vapour–liquid phase
diagramand surface tension) and their performancewere
good. We expect that this continuous version of the SW
potential can be useful to overcome the difficulties of
treating discontinuous potentials in statistical mechanics
problems, such as in conventional MD simulations.
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Appendices

Appendix 1. Fortran program for the tabulated CSW
potential for GROMACS 5.1

c This program generates the GROMACS input file
c ‘table_Ar_Ar.xvg’, in which the potential CSW and its
c force have been tabulated.
c The LJ parameters forArgon are the diameter in nanometres
c and the energy minimum ε in kJ/mol.
program (tabulation CSW)
implicit double precision(a-h,o-z)
dimension u(1000000), rr(1000000), deri(1000000),

&fuerza(1000000)
open(unit= 3,file= “table_Ar_Ar.xvg”,

&status = “unknown”)
sigma = 0.3405d0
xepsilon = 0.996078d0

cero= 0.d0
c These are the CSW parameters.
c xlam is the range of the SW potential that we wish tomimic.
xlam = 1.5d0
c This is the exponent that characterises the softness of the
c repulsive part of the CSW.
n = 2500
c This is the exponent that characterises the softness of the
c attractive part of the CSW potential.
m = 20000
c Since it is not necessary to evaluate the potential from r= 0
c we start at r= 0.2
overlap = 0.2d0
c The spacing gap in the table.
c The potential will be evaluated every 0.00001, starting at
c r= 0.2.
dis = 0.00001d0
c This is the table cutoff reported in the grompp.mdp file in
c GROMACS see ’User-specified potential functions’ from
c the GROMACS manual.
nsteps= 0.850d0/dis
xn = nsteps
nsteps=nint(xn)
do ir= 1,nsteps+3
c The number 3 is added to have at least data from r= 0 to
c r= table cut-off.
rr(ir)= 0.0d0 + (ir-1.d0)*dis
if (rr(ir).lt.overlap) then
u(ir)= 0.00d0
deri(ir)= 0.0d0
fuerza(ir) = -deri(ir)
write(3,200) rr(ir),cero,cero,u(ir),fuerza(ir),cero,cero
else
x = rr(ir)/sigma
c Here we start to build the mathematical expression for the
c CSW potential and its force
arg= −m ∗ (x − xlam) ∗ (x − 1.d0)
if(arg.ge.600.d0) then
c To avoid computational limits in evaluating big numbers, we
c have limited the exponential argument. Bigger than this
c number can generate errors
arg= 600.d0
endif
c This is the CSW potential

u(ir) = xepsilon ∗ 0.5d0 ∗ ((1.d0/x) ∗ ∗n + (1.d0 −
&dexp(arg))/(1.d0 + dexp(arg)) − 1.d0)

c This is the CSW force
deri(ir) = xepsilon ∗ 0.5d0 ∗ (1.d0/sigma) ∗ (−n ∗
&(1.d0/x) ∗ ∗(n + 1.d0) + 2.d0 ∗ m ∗ (2.d0 ∗ x − xlam −
&1.d0) ∗ dexp(arg)/((1.d0 + dexp(arg)) ∗
&(1.d0 + dexp(arg))))

fuerza(ir) = - deri(ir)
if (x.gt.xlam) then
c We selected a criterium to set the rcut of the CSW potential
c and its force when they differ to zero in 10−16
if(-u(ir).le.1.d-16) then
u(ir) = cero
endif
if(deri(ir).le.1.d-16) then
fuerza(ir) = cero
endif
endif
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c These are restrictions of GROMACS 5.1 to handle very
c small and very big numbers so we fixed the potential and the
c force to zero for such cases.
if(u(ir).ge.1.d30) then
u(ir) = cero
fuerza(ir) = -cero
endif
if(Abs(fuerza(ir)).lt.1.d-99) then
fuerza(ir) = cero
endif
write(3,200) rr(ir),cero,cero,u(ir),fuerza(ir),cero,cero
endif
enddo
200 format(2x,7(E15.8,4x))
stop
end

Appendix 2. Time step and (n,m)optimised selection

The CSW potential depends on n and m parameters (see
Figure A1) and these values are related to the steepness around
σ and λσ of the mimicked SW potential. In MD simulations
small time steps are required for potentials that are very steep.
We performed NVT MD simulations using 1000 particles at
a density ρ∗ = 0.8 and T∗ = 2. We analysed different (n,m)

Figure A1. CSW (n,m) and SW potentials for the case λ = 1.5.
The cases (1500, 20000) and (2500, 20000) overlap in this plot
with the SW potential. As can be noticed the CSW potential devi-
ates more from the SW potential as one reduces the (n,m) values.

Table 1. Recommended maximum time step to be used with
CSW (n,m) potentials to avoid simulation crashes.

CSW potential Maximum time step (ps)

(100, 100) 0.006
(200, 200) 0.003
(300, 300) 0.002
(400, 400) 0.001
(600, 600) 0.001
(1500, 20000) 0.0003
(2500, 20000) 0.0003

Figure A2. Radial distribution function for several CSW poten-
tial cases (n,m) at reduced density ρ∗ = 0.8 and temperature
T∗ = 2. Simulation data for SW potential of range λ = 1.5 from
[33] are shown with diamond symbols. As can be seen the agree-
ment between the CSW and SW potentials improves using the
higher (n,m) values.

Figure A3. Excess internal energy, U/Nε, for several CSW poten-
tial (n,m) cases used to mimic the behaviour of an SW potential
of range λ = 1.5 at reduced density ρ∗ = 0.8 and temperature
T∗ = 2. Target simulation data from [39] is shown with a triangle
symbol and CSW data with other symbols (see legend). As can be
noticed the agreement betweenCSWand SWpotentials improves
as (n,m) values increase.

parameter sets and to prevent that the simulation crashes due
to particle overlapping we needed to test different time steps
and we found for the (n,m) cases considered in this work the
time step upper limits reported in Table 1.

Note that one needs to decrease the time step by one order
of magnitude in going from (600, 600) to (1500, 20000) cases.
Doing a more fine time step search for the case selected in this
work (2500, 20000), we found that we could use δt = 0.0003 ps
but we decided to use δt = 0.0001 ps to guarantee not hav-
ing problems in any of the CSW different states of matter
studied.
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The selection of the set (2500, 20000) used in this work
has been done by analysing the performance of the CSW
potential that best mimicked the SW (λ = 1.5) potential. We
selected some target properties: single-state properties (inter-
nal energies, pressures and pair correlation functions) and
vapour–liquid coexistence densities.

We found that if we want to reproduce accurately the
SW potential properties, these (2500, 20000) high values are
required. See, for example, Figure A2 that shows the simulated
SW pair correlation function obtained by Henderson et al. [33]
and different CSW potentials. As can be noticed if one wants to
accurately reproduce the first pair correlation peak we need to
use around (2500, 20000) values.

Nevertheless, if one is interested in only qualitatively
describing an SW behaviour, one can try smaller n and m val-
ues (around (600, 600)) and then use an one order ofmagnitude
greater time step as can be seen in Table 1.

Besides, in Figure A3 the internal energyU/Nε for the same
thermodynamic state is shown for several CSW cases and the
simulation data of [39]. Again the best CSW performance is
obtained with the case (2500, 20000).

We did a similar analysis with other properties and found
that the CSWpotential with (2500, 20000) showed the best per-
formance when compared with the available SW simulation
data.
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