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ABSTRACT
We analyze the changes in the interfacial free energy between a spherical solid cluster and a fluid due to the change of the radius of the
solid. Interfacial free energies from nucleation studies using the seeding technique for four different systems, being hard spheres, Lennard-
Jones, and two models of water (mW and TIP4P/ICE), were plotted as a function of the inverse of the radius of the solid cluster. In all
cases, the interfacial free energy was a linear function of the inverse of the radius of the solid cluster and this is consistent with Tolman’s
equation. This linear behavior is shown not only in isotherms but also along isobars. The effect of curvature on the interfacial free energy
is more pronounced in water, followed by hard spheres, and smaller for Lennard-Jones particles. We show that it is possible to estimate
nucleation rates of Lennard-Jones particles at different pressures by using information from simple NpT simulations and taking into account
the variation of the interfacial free energy with the radius of the solid cluster. Neglecting the effects of the radius on the interfacial free energy
(capillarity approximation) leads to incorrect values of the nucleation rate. For the Lennard-Jones system, the homogeneous nucleation curve
is not parallel to the melting curve as was found for water in previous work. This is due to the increase in the interfacial free energy along
the coexistence curve as the pressure increases. This work presents a simple and relatively straightforward way to approximately estimate
nucleation rates.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5121026., s

I. INTRODUCTION

When there is an interface between two phases, there is a con-
tribution to the free energy that can be assigned to the presence of
such an interface. When given per unit of area, this defines the inter-
facial free energy γ. Strictly speaking, γ is a well and uniquely defined
property, in the thermodynamic sense, when the interface between
the two phases is planar so that the interfacial area is a well-defined
property and when the chemical potential of the two phases is iden-
tical. Only in this way can one obtain the interfacial contribution
in a nonambiguous way. Thus, the value of γ has been extensively
reported in experiments where one studies the vapor-liquid equilib-
rium at coexistence conditions with a planar interface.1,2 When any
of these two conditions is not satisfied (either the interface is not
planar or the chemical potential of both phases in the bulk is not
the same), then it is not possible to define uniquely γ and the value

obtained will depend on a certain arbitrary choice.2–4 Such a choice
defines where one of the phases finishes and where the other phase
begins (through a dividing surface in the traditional description or
through an order parameter as in more modern simulation stud-
ies). Even acknowledging this limitation, one could still recognize
that it may be possible to make a specific choice that leads to a value
of γ that is useful from a practical point of view. A particular area
in which having a value of γ could be useful is homogeneous crys-
tal nucleation, which in turn plays a central role in a broad range
of disciplines such as climate science,5 food industry,6 or material
science,7 to mention just a few.

In the last 20 years, molecular simulation studies have led to
huge progress in our understanding of the nucleation of solid phases.
Nowadays, techniques such as forward flux sampling (FFS)8 and/or
transition path sampling (TPS)9 allow us to compute the nucleation
rate J (i.e., number of critical solid clusters per unit of volume and
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time) in a rigorous way. Another approach to J was a combination
of the traditional formalism of Volmer-Weber10-Becker-Doring11

(VWBD) and computer simulations.1,12 This pioneering route was
first used by Auer and Frenkel13,14 and followed by others.15–18

Hence, the key equation leading to J is

J = ρliq
√

(∣ΔG′′∣Nc/(2πkT))f
+exp(−ΔGc/(kT)). (1)

All that is needed in Eq. (1) can be obtained from computer
simulations: the density of the liquid ρliq, the attachment rate f +,
the free energy barrier to nucleation ΔGc, and the Zeldovich factor
Z =

√

(∣ΔG′′∣Nc/(2πkT)), where ∣ΔG′′∣Nc is the second derivative
of the Gibbs free energy of the system with respect to the size of
the solid cluster (evaluated at the critical particle size Nc). Typi-
cally, the values of Z and ΔGc are obtained using the well-known
biasing technique umbrella sampling (US),19 which commonly gives
name to the whole procedure of Auer and Frenkel, although they
can also be obtained via metadynamics.20,21 In a very important
paper, Filion et al.15 showed that US leads to values of J practically
identical to those obtained from FFS. Filion et al. not only showed
that the values of J agree very well with those obtained from other
routes, but they also showed that the free energy barrier (and the
product Zf +) did not depend significantly on the order parameter
chosen to label the molecules as liquid or solid. A similar conclu-
sion was recently reached by Prestipino17 for the Lennard-Jones
(LJ) and water mW22 models. Consequently, the obtained values
of J were not sensitive to the choice of the order parameter. Note
that the value of γ is not used/needed when estimating J by means
of US.

As computational studies for J (either using US, FFS, or TPS)
are rather expensive, in recent years, we have proposed a some-
what different version of Eq. (1) that was denoted as seeding.23–29

In this technique,25–28 a cluster of the solid phase is inserted into
the metastable liquid and the thermodynamic conditions are varied
until the cluster becomes critical (i.e., going to the liquid phase half
of the times and to the solid phase the other half). Then, the value of
J is estimated as

J = ρliq

√

∣Δμ∣
6πkTNc

f +exp[(−ΔμNc)/(2kT)], (2)

whereΔμ is the difference in chemical potential between the bulk liq-
uid and the bulk solid at the considered conditions of temperature
T and pressure p. The main difference with Eq. (1) is that, instead
of computing Z and ΔGc rigorously, they are now estimated from
the well-known equations of Classical Nucleation Theory (CNT).1,30

While Eq. (1) is almost exact and leads to practically exact values of J,
Eq. (2) is not, and hence, leads to approximate values of J. The reason
why results from Eq. (2) are approximate is that they depend dra-
matically on the selection of the order parameter chosen to define the
number of particles Nc in the critical cluster of radius Rc. The impact
of that choice on the value of J has been discussed in detail recently
by some of the authors.31 However, we have found over the last few
years that a sensible choice of the order parameter (used to label the
molecules as liquid and solid) using the methodology of Lechner and
Dellago32 along with the so-called mislabeling criterium28,33,34 leads
to quite reasonable estimates of J for the following systems: hard
spheres, LJ, NaCl, and several water models. One can summarize the

situation by saying that for a certain choice of the order parameter,
the combination of the VWBD formalism and the CNT yields very
good predictions of the nucleation rate J, which is an experimentally
accessible property. We shall denote Eq. (2) as seeding which can be
regarded as a combination of the VWBD formalism and Classical
Nucleation Theory with input obtained from computer simulations.
Besides, CNT relates the interfacial free energy and the size of the
critical cluster,

γCNT = (
3Ncρ2

sol∣Δμ∣
3

32π
)

1/3

, (3)

where ρsol is the density of the solid. One should keep in mind that
γCNT is not unique as it depends on the selection of the order param-
eter so it is not possible to define interfacial free energies in a unique
way when the interface is not planar (and/or the chemical potentials
of the two bulk phases are not identical). However, there is a cer-
tain choice of the order parameter that yields a value of γCNT that
allows one to correctly estimate the free energy barrier to nucleation
ΔGc as

ΔGc =
16πγ3

CNT

3ρ2
s ∣Δμ∣

2 . (4)

Note that Eqs. (3) and (4) both assume a spherical shape for
the critical cluster. We have shown in the past28 that a judicious
choice of the order parameter combined with the seeding technique
leads to the values of Nc and γCNT that allows one to obtain reason-
able estimates of ΔGc and J. Thus, we can conclude that an order
parameter based on the mislabeling criterion is able to produce val-
ues of γCNT , which makes the CNT formalism (in combination with
the VWBD kinetic formalism) a useful approach to study nucleation
problems.

II. INTERFACIAL FREE ENERGY
In 1949, Tolman suggested that the value of γ of a spherical

interface is different from that of a planar interface.35 Still the best
source to read about this issue is the classic book of Rowlinson and
Widom, and we refer the reader to this Ref. 2. The variation of γ with
the radius of the interface is given by Tolman’s equation,

γ = γ0(1 −
2δTolman

R
). (5)

Here, R is the radius of the phase forming the sphere (a solid
phase in this paper), δTolman is a constant, and γ0 is the interfacial
free energy of the planar interface at coexistence. Tolman’s equa-
tion was derived to describe the variation of γ with the radius of the
spherical phase while keeping the temperature constant. To derive
the previous equation, Tolman introduced a number of approx-
imations that are described in the original paper (i.e., neglecting
terms to evaluate an integral and performing a Taylor expansion
over the final result), but more importantly, it was assumed that
the distance between the equimolar surface and the surface of ten-
sion (that for which Laplace’s equation is valid) was constant and
did not depend on the radius of the spherical phase. Thus, accord-
ing to Tolman, the parameter δTolman is just the distance between the
equimolar dividing surface and the surface of tension, and for this
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reason, it is usually denoted as the Tolman length. However, there
is another simple way of looking at Eq. (5). For the planar inter-
face, the radius of curvature is infinite and Tolman’s equation can be
regarded as a simple Taylor expansion of γ in powers of 1/R trun-
cated at first order. Of course, that means that second and higher
order terms are neglected. Whether these terms are important or not
can be tested by plotting γ as a function of 1/R and looking for devi-
ations from linearity. Another important consideration is that the
value of γ in Eq. (5) refers to that at the surface of tension and so
R corresponds to such surface (thus, γ = γs and R = Rs). This is a
convenient choice because, in nucleation studies, it is the surface of
tension the dividing surface considered30,36,37 and, for this reason,
γs ≃ γCNT and Rs ≃ Rc. Tolman’s equation and the Tolman length
have been the focus of many studies, and still it is a matter of intense
debate.36,38–53

In our previous work, by using the seeding technique, we have
obtained the values of γCNT for the liquid-solid interface.28,54 Here,
we shall analyze in more detail whether the obtained values of γCNT
when plotted as a function of 1/Rc are linear or not. There is a subtle
issue though concerning the value of the interfacial free energy for
the planar interface at equilibrium γ0 (i.e., at a certain point of the
coexistence curve between the liquid and the solid). Let us assume
that we want to study the nucleation of a solid at a certain (T, p),
at which the radius of the critical cluster is Rc. Outside the liquid-
solid coexistence curve, the value of the interfacial free energy for a
planar interface is not uniquely defined (i.e., it depends on an arbi-
trary choice of the order parameter). However, at coexistence, the
interfacial free energy between two planar interfaces is well defined,
unique, and can be measured in an experimental laboratory. For this
reason, it is very convenient to have a simple way of mapping from
γ0 to γ as in Eq. (5). There are, at least, two reasonable options when
one is interested in the state (T, p). The first one is the coexistence
point at the same pressure. The second is the coexistence point at
the same temperature (this second choice was the one adopted by
Tolman). Strictly speaking, there are many more as there are
infinitely many curves connecting a point of the coexistence curve
with the state of interest (T, p). This is illustrated in Fig. 1. In panel
(a), the liquid-solid coexistence line of the mW model is shown.55

In panel (b), the liquid-solid56 and vapor-liquid57 coexistence lines
of the LJ model are shown as solid lines (and their extension in the
metastable region as dashed lines). As shown in Fig. 1(a) for the mW
model, as the reference of the value of the interfacial free energy of
the planar interface, one could choose either the coexistence point
at the same T or the coexistence point at the same p. It seems that
for studies dealing with the liquid-solid equilibria, the choice of γ0 at
the same pressure is more convenient. For instance, for the Lennard-
Jones system [see Fig. 1(b)], for the state on the left hand side, the
value of γ0 at the same T may occur at negative pressures and cav-
itation of the liquid could prevent its determination. On the other
hand, for the vapor-liquid interface, the state on the right hand side,
the opposite holds true. In fact, when studying the cavitation of the
liquid at slightly negative pressures, γ0 should be chosen at the same
T, as the vapor pressure is always positive and there is no point of the
coexistence curve at negative pressures. Therefore, we shall rewrite
Eq. (5) as

γCNT = γ0,T(1 −
2δT
Rc
), (6)

FIG. 1. (a) Schematic representation of a hypothetical γ value with respect to
the melting line of the mW water model,55 and its relation with two different
coexistence γ0 values, one along the isotherm γ0,T and one along the isobar
γ0,p. (b) Sketch of the phase diagram of the LJ model (melting56 and vapor-
liquid57 lines in red and green, respectively) suggesting that for a given problem,
one could be more interested in working along isobars than isotherms and vice
versa.

γCNT = γ0,p(1 −
2δp
Rc
). (7)

Obviously, the value of δ depends on the choice of γ0. Hence, we
shall keep the notation δp or δT to clarify this. Since all our previous
studies of seeding were done at constant pressure, we shall adopt
Eq. (7) as our working expression (except for the hard sphere system
where the seeding was done at constant temperature and we will use
Eq. (6)).

The main idea of this work is to plot all the values of γCNT
obtained in our previous studies of seeding as a function of 1/Rc
and to analyze the functional dependence that they describe. In par-
ticular, whether or not they appear linear. Note that this is a post-
analysis of all our previously published results as this aspect was not
considered in our anterior work.

For the Lennard-Jones (LJ) system, our preceding study was
done only for a pressure close to zero [i.e., p∗ = p/(ϵ/σ3) = −0.02 ≃ 0].
Since it would be useful to analyze the effect of pressure for differ-
ent systems, we include another seeding calculation of the LJ model
under a different pressure p∗ = 4.95. Details on the calculations are
similar to those described in our previous work.28 Note that the LJ
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TABLE I. Results from seeding calculations for the LJ system at a reduced pressure of p∗ = p/(ϵ/σ3) = 4.95. Number densities for the fluid and solid phase are given in reduced
units [i.e., ρ∗ = (N/V)σ3]. The total number of molecules of the simulation NT and that of the critical cluster Nc are given and also the reduced temperature at which the cluster
is critical. We also report the chemical potential difference between the fluid and the solid Δμ, the interfacial free energy per unit of area γCNT , the attachment rate f +, the
attachment length λ, the free energy barrier for nucleation ΔGc , and the logarithm of the nucleation rate J. τ is the unit of time in reduced units (i.e., τ =

√

mσ2/ϵ).

Nc NT T/(ϵ/k) ρ∗liq ρ∗sol |Δμ|/(kT) γCNT/(ϵ/σ2) f +/(1/τ) λ/σ ΔGc/(kT) Log10(Jσ3τ)

576 31 901 0.854 0.951 1.030 0.215 0.483 862.1 0.59 62 −26
3 810 87 665 0.915 0.940 1.019 0.114 0.512 2802.0 0.68 217 −94
12 678 275 758 0.945 0.934 1.015 0.075 0.518 3448.6 0.97 475 −206

model considered is the truncated and shifted LJ potential in the
form proposed by Broughton and Gilmer58 and described in more
detail by Laird et al.56 The results of the seeding calculations are pre-
sented in Table I. This allows us to analyze, for LJ and the water
models, if the values of δp are affected by pressure.

The main result of this work is shown in Fig. 2. Values of γCNT
that are calculated by means of the seeding technique are shown
as a function of 1/Rc, which were obtained along one isotherm for
the HS system (using the continuous version of Jover et al.59) and
along several isobars for the rest of the systems. Results are pre-
sented for the HS system, for the LJ system58 (two isobars), for the
TIP4P/ICE60 model of water (two isobars), and for the mW model22

of water (three isobars).28,54,61 As can be seen, γCNT is reasonably well
described (within the error estimates) by a linear fit when it is plot-
ted as a function of 1/Rc. Systematic error sources come from the

order parameter choice, while statistical errors may occur due to the
stochasticity of the molecular dynamics trajectory. In this case, more
trajectories could help minimize uncertainties. In addition, for the
smaller critical clusters, the error estimate increases as the prepara-
tion is more complicated and the lifetime of the seed decreases since
it is more sensitive to fluctuations. In any case, the uncertainties of
γCNT usually happen to be in the range of 3%–7% being somewhat
larger for the smaller clusters (i.e., low values of Rc). It should be
mentioned that for the interface between a liquid and a solid, the
interfacial free energy of a planar interface at coexistence depends
on the plane (as given by its Miller indices) of the solid in con-
tact with the liquid.62–67 The anisotropy is in general small (differ-
ences between planes are of about 5%–8%).68 We have also included
in the fit the value of γ for 1/Rc = 0 estimated as the average for
three planes of the interfacial free energy at coexistence (at the same

FIG. 2. γCNT against 1/Rc for (a) HS
(one isotherm), (b) LJ (two isobars), (c)
mW (three isobars), and (d) TIP4P/ICE
(two isobars). Error bars for γCNT are in
the range of 3%–7%. The parameters of
the expansion analogous to the Tolman
lengths are obtained from the linear fits.
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pressure for the LJ and water systems). The planes considered were
{100}, {110}, and {111} for HS and LJ systems, and basal, primary
prismatic and secondary prismatic for water models, respectively.
The values of γ0 obtained from rigorous calculations were taken
from previous work.54,56,62,63,68–71 Note that for p∗ = 4.95, we have
computed, in this work, the interfacial free energy at coexistence
[T/(ϵ/k) = 1.000] by means of the mold integration technique68

for two crystal orientations {100} and {111}. The obtained values
for γ0,p were 0.56(1) and 0.51(1), respectively, in good agreement
with previous estimations from Laird et al. who reported values
for three planes at different coexistence conditions.56 The numer-
ical details for the new calculations are identical as reported for
those same crystal orientations at coexistence conditions p∗ = 0.00
and T/(ϵ/k) = 0.618 in previous work.68 As discussed in detail by
Koß et al.,72,73 the fact that the crystal-fluid interfacial free energy
depends on the exposed plane makes very large clusters (i.e., close to
coexistence conditions) to become nonspherical and adopt a poly-
hedric form probably given by the Wulff construction. The surface
area of such a polyhedric nucleus is larger than the surface area
of a sphere with the same volume. Hence, assuming a spherical
shape leads to an overestimated surface free energy. It depends on
the considered system size whether these anisotropy effects can be
neglected or not. Nevertheless, for the clusters considered in this
work (in most cases Nc < 18 000), we observed all of them to be
spherical.

As can be seen, the results of this work for the liquid-solid inter-
face can be described by a linear function of 1/Rc (although for the
vapor-liquid equilibria, it has been suggested that quadratic terms
should be included74,75). The values of δT and γ0,T for HS as well as
δp and γ0,p for LJ and the two models of water (mW and TIP4P/ICE)
arising from the fits to Eqs. (6) and (7), respectively, are presented in
Table II along with their corresponding errors.

For the mW, our seeding results were obtained through iso-
bars. However, we were able to obtain the variation of γ with 1/Rc
along isotherms by interpolation. As shown in Fig. 3, γCNT can be

TABLE II. γ0: Values of the interfacial free energy of the planar interface at coexis-
tence conditions (sub T or p depending on which variable was kept constant) in units
of HS (kT /σ2), LJ (ϵ/σ2), and water models mW and TIP4P/ICE (mJ/m2). δ: Values of
the expansion coefficient analogous to the Tolman length obtained from a linear fit of
γCNT data in units of HS and LJ (σ) and water models mW and TIP4P/ICE (nm). For
the LJ system, the reduced pressure p∗ is given in units of ϵ/σ3. The reported uncer-
tainties include the contribution from the standard error of the fit and the contribution
due to the error bars in γCNT .

γ0,T δT

HS 0.576(19) −0.41(11)

γ0,p δp

LJp∗=0.00 0.358(3) 0.203(13)
LJp∗=4.95 0.543(6) 0.286(33)
mWp=1 bar 35.0(8) 0.12(3)
mWp=2000 bars 38.4(5) 0.14(3)
mWp=5000 bars 39.8(7) 0.15(3)
TIP4P/ICEp=1 bar 29.9(9) 0.24(4)
TIP4P/ICEp=2000 bars 39.1(1.4) 0.28(5)

FIG. 3. Fits of isobars (red lines) and isotherms (green lines) of γCNT vs 1/Rc

for mW. Symbols correspond to the computed values that are fitted. There are
two overlapping symbols for each value indicating which isotherm and isobar are
the corresponding ones. Inner symbols imply isotherms, whereas the outer sym-
bols imply isobars. Outer: diamonds (5000 bars), squares (2000 bars), and circles
(1 bar). Inner: circles (257.5 K), crosses (250.0 K), and pluses (240 K). Error bars
are omitted for clarity, although they are of the same order of magnitude as those
of Fig. 2.

well described by a linear function of 1/Rc both through isotherms
and isobars. The values of δT obtained are 0.24, 0.31, and 0.38 (in
nm) for T = 240, 250, and 257, 5 (K) respectively, whereas the values
of γ0,T are 42.75, 42.69, and 41.86 (in mJ/m2), respectively,. As can
be seen from the values of Table II, for the mW model, the values of
δT are higher (by a factor of about two) than the values of δp.

In principle, δT and δTolman should be identical as both corre-
spond to isotherms, and the surface to be considered in nucleation
studies is that at which Tolman’s equation is referred, which is the
surface of tension. For this reason, δT in principle should correspond
to the distance (difference) between the equimolar radius and the
radius at the surface of tension (after assuming that it is constant
along the isotherm). Part of the problem when checking this point
is that although the equimolar radius is easily obtained from a den-
sity profile, the radius of tension can only be determined rigorously
by determining the free energy of the system. Since free energy cal-
culations are expensive, little or almost nothing is known about the
radius of tension. This has made it difficult to obtain definitive con-
clusions on this issue for many years. Here, we simply show that
γCNT is well described by a linear expansion over 1/Rc, pointing out
that further studies are required to establish the relation between the
slope and the distance between the two surfaces. Besides, when plots
are made along isobars, there is no molecular theory explaining the
origin of the value of δp (see, however, Ref. 49 for a recent approach).
In any case, from a practical point of view, it is enough to know
that the dependence of γCNT with 1/Rc is well described by a linear
curve.

From the results of Table II, it can be concluded that the values
of δT and δp are smaller than a molecular diameter. In terms of the
molecular diameter, they were found to be of about 1/4 for the LJ,
4/10 for the HS and the mW model of water, and of about 9/10 for
the TIP4P/ICE model of water (the molecular diameter of water is
typically of about 0.31 nm, and the first peak of the oxygen-oxygen
correlation function is located around 0.28 nm). This also means that
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the impact of curvature effects on γ decreases in the order: water
(TIP4P/ICE), water(mW), HS, and LJ.

It should be recognized that when describing the values of γCNT
by using Eqs. (6) and (7) both the impact of curvature and of the
thermodynamic driving force are incorporated into the fit (i.e., when
changing the size of the critical cluster one is also changing the value
of Δμ). We believe that this is a useful approach from a practical
point of view as the value of the interfacial free energy of a planar
interface cannot be defined uniquely when the system is not at the
equilibrium conditions.3,4 Attempts have been made to evaluate the
impact of curvature at constant thermodynamic conditions.44 Here,
our approach is to include both effects (curvature and driving force)
into the description as, in our view, the impact of curvature and
thermodynamic driving force cannot be determined separately in a
nonambiguous way.

Another key issue is the sign of δ. For the HS, δT is negative.
For the rest of the systems, δp is positive. We also found that for the
mW, δT was positive. Further work is needed to understand the ori-
gin of this difference of sign between HS and the rest of the systems.
Thus, in the case of HS, the value of γ increases as the radius of the
solid phase becomes smaller. That was already noticed by Auer and
Frenkel,13 Filion et al.,15 and Sharma and Escobedo.76 However, in
the case of the LJ and water models, it is the opposite, the value of
γ decreases as the radius of the solid phase becomes smaller. It is
also obvious from the previous discussion that using the capillarity
approximation (i.e., assuming that the value of the Tolman length
is zero or in other words replacing γCNT by γ0) in nucleation, stud-
ies will yield extremely poor predictions for the nucleation rate. The
argument also goes the other way around. Values of γCNT obtained
from fits (using expressions of CNT) to experimental measurements
of the nucleation rate cannot be used to estimate the value of the
interfacial free energy for the planar interface at coexistence γ0. Note
that although determining experimentally the interfacial free energy
for a planar interface at coexistence is quite simple in the case of
a vapor-liquid interface, it is extremely difficult from a technical
point of view for a solid-liquid interface. For instance, the exper-
imental values (at low pressures) of the interfacial free energy for
the ice Ih-water interface at coexistence77–79 range from the value of
25–35 mJ/m2. This explains why it has been a common approach
to estimate γ0 for the liquid-solid interface using nucleation studies
combined with CNT. This work shows that this approach is wrong.

Let us now discuss the variations of γ0,p and δp with pressure.
As can be seen in Table II, the values of γ0,p increase with pressure
both for the LJ system56 and for water.54 It remains to be explored if
this is a general feature in liquid-solid interfaces. Our results suggest
that δp increases slightly with pressure (nevertheless, the differences
are only slightly larger than our statistical uncertainty). Therefore,
assuming that δp is constant for a certain potential model seems to
be a reasonable approximation. If this is the case, the knowledge of
the value of δp for a given model allows for a relatively simple path
to evaluate J over a wide range of temperatures and pressures as will
be described in Sec. III.

III. A WORKED EXAMPLE: NUCLEATION
OF THE LJ SYSTEM

The combination of Eq. (7) and classical nucleation theory
opens up a route to determine J in a relatively easy way. All what is

needed are values of γ0 along the coexistence line (which must also
be determined in advance), the value of δp for the potential model
(we shall assume that is constant and does not change with pressure)
and some other magnitudes that can be obtained from simple NpT
simulations such as the density of the solid ρsol, the density of the
liquid ρliq, and Δμ, which can be obtained by using thermodynamic
integration starting at the coexistence line. The procedure goes as
follows:

● Simulations are performed to determine the coexistence line
of the model. For instance, direct coexistence simulations
can be useful for that purpose, although certainly other
routes as free energy calculations are also possible.

● Simulations are performed (using any of the different meth-
ods proposed in the literature4,63,65,68,71,80–83) to determine
the interfacial free energy at coexistence at the pressure of
interest for the planar interface for several planes in order to
estimate γ0,p.

● NpT simulations are performed for the liquid and solid
phase to determine the equation of state and chemical poten-
tials (via thermodynamic integration from the coexistence
point) of both phases.

● Several seeding runs are performed for a certain isobar in
the region of interest to determine several values of γCNT and
the value of δp. We shall assume that δp is hardly affected by
pressure and therefore can be used as a constant for a certain
potential model.

● At the pressure and temperature of interest, the difference in
the chemical potential of both bulk phases Δμ is determined
and the value of Rc is obtained by solving the second order
equation,

Rc =
2γCNT
(ρsolΔμ)

=

2γ0,p

(ρsolΔμ)
(1 −

2δp
Rc
). (8)

● Once the value of Rc is computed, the value of Nc is obtained
as Nc = ρs4πR3

c/3, the value of ΔGc is obtained from Eqs. (4)
and (7), and Z is estimated as given by the term under the
square root of Eq. (2) (i.e., by the expressions of CNT).

● The attachment rate f + is then computed from simulations
or alternatively estimated (quite accurately) by using the
approximate expression f +

= 24D(Nc)
(2/3)
/λ2 which relates

f + to the diffusion coefficient of the metastable liquid D and
assuming that the attachment length λ is of the order of a
molecular diameter σ as shown in Ref. 33. Thus, from NpT
simulations of the metastable liquid, one can determine D
and therefore f + using the approximate expression.

In summary, knowing the value of δp of a certain system allows
one to estimate values of J rather easily using information obtained
from simple NpT simulations. We shall apply this protocol to the
LJ model for four different pressures. The values of γ0 come from
the work of Laird et al.56 These values are presented (along with
the values of p and T along the coexistence line of the LJ system)
in Table III.

Regarding δp, we shall use the value δp = 0.2425σ which is close
to the average of the two values presented in Table II. We shall
assume that δp is constant and does not depend on pressure which
as discussed above is a good approximation. It is certainly true that

J. Chem. Phys. 151, 144501 (2019); doi: 10.1063/1.5121026 151, 144501-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE III. Values of γ0 along the coexistence line of the LJ systems as reported
in Ref. 56. The values of pressure and temperature of the coexistence line are also
shown.

pm/(ϵ/σ3) Tm/(ϵ/k) γ0/(ϵ/σ2)

0.00 0.618 0.358
2.29 0.809 0.445
4.95 1.000 0.544
8.74 1.250 0.685

seeding runs are still needed to determine the value of δp for a certain
pressure. However, the procedure outlined here avoids performing
seeding runs at other pressures allowing for a relatively fast deter-
mination of J over a wide range of temperatures and pressures. In
Fig. 4, we show the results of J obtained from the theoretical route of
this work (by using a constant value of δp). These are compared with
results obtained from seeding28,84 and also from brute force calcula-
tions both from this work and from that of Baidakov and Tipeev85

The values of J from the brute force simulations of this work were
obtained from 10 independent NpT runs of a system containing
N = 13 500 LJ particles. The value of J was determined as usual from
the following expression:

J =
1
⟨t⟩V

, (9)

where ⟨t⟩ is the average time for crystallization of the 10 runs. Values
of J from the brute force simulations are reported in Table IV.

As can be seen, the agreement between the results of this work
and the brute force simulations is quite good. An interesting exer-
cise is to evaluate the effect of δp. In Fig. 5, J is presented for
p∗ = 0.00 using δp = 0.2425σ and neglecting changes in the interfa-
cial free energy with curvature (i.e., δp = 0.0σ). As can be seen when
using the capillarity approximation, the values of J are too low when

FIG. 4. Nucleation rates J of the LJ system as estimated from the procedure
described in the main text for four different isobars (lines) plotted as a function
of the supercooling ΔT = Tm − T. From left to right, the results correspond to
p∗ = 0.00, 2.29, 4.95, 8.74. Results from brute force calculations of this work, and
from seeding calculations from previous work (for p∗ = 0.00) and from this work
(for p∗ = 4.95) are also shown.

TABLE IV. Values of J for the LJ system alongside their thermodynamic conditions
as obtained from brute force simulations.

p/(ϵ/σ3) T/(ϵ/k) log10(Jσ3τ)

0.00 0.448 −7.53
2.29 0.579 −7.94
4.95 0.710 −7.84
8.74 0.890 −8.82

compared to the simulation results from brute force simulations.
Thus, as reported many times, one cannot use the value of γ0,p to
obtain γ for nucleation studies.

Let us finish with an interesting exercise. It is relatively straight-
forward to determine the homogeneous nucleation line THNL. For
each pressure, there is a temperature below which it is not possible
to have the metastable liquid because the system freezes. By connect-
ing these temperatures, one obtains the THNL line. Since the THNL is a
kinetic limit, it depends on the system size and on the typical window
time available (which is quite different in simulations and in exper-
iments). In experiments with real substances, THNL ,exp corresponds
approximately to the states at which J = 1016/(m3s), whereas in simu-
lations of real substances the THNL ,sim corresponds to J = 1030/(m3s)
as described in detail in previous work.33 By using the values of
σ = 0.3405 nm and ϵ = 0.997 kJ/mol for argon, we can estimate THNL.
The results are shown in Fig. 6.

As can be seen, the THNL is not parallel to the melting curve.
The distance between the THNL and the melting line increases with
pressure. The important physical conclusion of that is the following:
it is more difficult to freeze a supercooled liquid at high pressure.
This conclusion could already be anticipated from Fig. 4 where even
in brute force simulations we needed further supercooling to obtain
spontaneous freezing in the brute force runs. In a recent paper, a
similar conclusion was obtained by analyzing the freezing of water
under pressure.54 Thus, the fact that freezing is more difficult under
pressure seems to be a general conclusion. Since the value of δp does
not change much with pressure, the reason behind this behavior is
the fact that γ0 increases with pressure along the coexistence curve

FIG. 5. Nucleation rate J at p∗ = 0.00 for the LJ model as a function of the super-
cooling ΔT computed with and without the capillarity approximation. Results are
compared to results from brute force calculations and from seeding.
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FIG. 6. Temperature at which the homogeneous nucleation is found in experiments
THNL ,exp (blue) and in simulations THNL ,sim (red). The melting line of the model
(green) is also shown. Solid circles come from the brute force calculations of this
work.

both for LJ and for water. We note that the increase in γ0 with pres-
sure for the Lennard-Jones system is consistent with the empirical
proportionality between melting temperature and γ0 found in close-
packed metals.86 Of course, this rule does not apply to water since
γ0 also increases with pressure despite the fact that the slope of the
melting line is negative. In summary, pressure slows down nucle-
ation via an increase in γ0 both in water and in LJ. Let us discuss
now the effect of pressure on nucleation via the diffusion coefficient.
In general (water being an exception), the diffusion coefficient of
liquids decreases with pressure affecting the attachment rate and so
lowering the nucleation rate. Nevertheless, the impact of this kinetic
effect on J is rather small as compared to the impact of γwhich enters
to the third power in the exponential term of Eq. (1) through ΔGc as
reflected by Eq. (4).

To sum up, pressure prevents nucleation in two quite different
systems: LJ and water. Although the LJ system has been studied for
quite a long time, this conclusion has not been reported (as far as we
know) before. Whether this is a general feature of molecular solids,
whether other systems also behave in a similar way remains unex-
plored. Here, by using the simple approach proposed in this work,
it is shown that from Ar to water, pressure prevents freezing. The
key is γ0 and now simulations are helping to determine this quantity
(which is quite difficult to be obtained experimentally) and to clarify
the kinetics of freezing.

IV. CONCLUSIONS
In this paper, the values of the interfacial free energy obtained

from seeding studies of nucleation are plotted as a function of 1/Rc
(including an estimate of the value for 1/Rc = 0). The plot is linear
suggesting that γ can be expanded in series of 1/Rc truncated at first
order. This is in line with an equation proposed by Tolman 70 years
ago.35 The value of the slope is just given by −2γ0δ, where δ has units
of length. We note that the value of γ0 (i.e., the value of γ for a planar
interface under coexistence) can be obtained along isotherms or iso-
bars [or actually through other paths connecting the state of interest
(T, p) with the coexistence line]. This leads to two different values of
δ, one when γ0 is obtained under coexistence conditions at the same

pressure δp and another one when γ0 is obtained under coexistence
conditions at the same temperature δT . For freezing studies, it seems
to be easier to consider for γ0 that of coexistence at the same pressure
as the system under consideration. The values of δp obtained in this
work are smaller than a molecular diameter and are positive for LJ,
and models of water (mW and TIP4P/ICE) and negative (δT) for HS.
Their absolute values decrease in the following order: water, HS, and
LJ. It is clear from this work that the capillarity approximation (i.e.,
to neglect curvature effects) cannot be used in nucleation studies.
Conversely, if the interfacial free energy is obtained from experimen-
tal nucleation studies, the obtained value cannot be taken as an esti-
mate of the equilibrium coexistence value for the planar interface.
We have found that the value of δp increases slightly with pressure
for the LJ and water models. The change is small, and assuming that
is constant and does not change with pressure seems to be a good
approximation. This allows one to estimate nucleation rates within
the CNT formalism (but with magnitudes estimated from computer
simulations). For the LJ system, we were able to obtain values of J for
four isobars from simple NpT simulations. We also show evidence
that the distance from the melting temperature to the homogeneous
nucleation line increases with pressure for a LJ system. The same was
found previously for water. Thus, pressure might make the forma-
tion of solids more difficult for systems as far apart as Ar and water.
We hope the approach shown here may be useful in future stud-
ies, and we can obtain further molecular understanding on the sign
and value of δ both along isotherms (as in the Tolman derivation)
and isobars. We have restricted our investigation to the liquid-solid
interface. It remains to be studied if the conclusions of this work can
or cannot be generalized to the case of the vapor liquid interface.
In this work, we have shown that the equation proposed by Tolman
in 1949 (although interpreted in a somewhat different way) allows
us to understand the nucleation of a number of systems 70 years
later.
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