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This work reexamines seeded simulation results for NaCl nucleation from a supersaturated aqueous
solution at 298.15 K and 1 bar pressure. We present a linear regression approach for analyzing
seeded simulation data that provides both nucleation rates and uncertainty estimates. Our results
show that rates obtained from seeded simulations rely critically on a precise driving force for the
model system. The driving force vs. solute concentration curve need not exactly reproduce that of
the real system, but it should accurately describe the thermodynamic properties of the model system.
We also show that rate estimates depend strongly on the nucleus size metric. We show that the rate
estimates systematically increase as more stringent local order parameters are used to count members
of a cluster and provide tentative suggestions for appropriate clustering criteria. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5024009

I. INTRODUCTION

Nucleation is important in many contexts, yet both the-
ory and simulation have largely failed to quantitatively predict
experimental nucleation rates.1–5 Recently, some promising
results6,7 have been obtained using a new seeded simulation
technique.8,9 The seeding approach was developed to cir-
cumvent certain problems with other rare event methods1 in
studies of solute precipitate nucleation. It was not originally
expected to provide highly accurate rates,8 and as outlined
above there are many cases where it should not provide accu-
rate rates. The seeding approach infers interfacial free ener-
gies,10 attachment frequencies, and ultimately nucleation rates
from the rate at which seeded nuclei of different initial sizes
grow or shrink. These ideas are also present in the classical
nucleation theory (CNT), and yet seeding avoids several of
the most problematic assumptions within CNT.11 By using
a cluster size coordinate, the seeding approach avoids defin-
ing an explicit surface around the nucleus and the associated
capillarity approximations.12,13 It also avoids commonly used
assumptions about diffusion limited attachment by extracting
the attachment frequency from short trajectory data. Seed-
ing results have previously been combined with a spheri-
cal nucleus assumption to obtain an effective interfacial free

a)Authors to whom correspondence should be addressed: nerz@lbl.
gov; d.quigley@warwick.ac.uk; bilsmith@uoguelph.ca; and baronp@
engineering.ucsb.edu

energy, but in principle the seeding equations only require the
interfacial free energy and the shape factor as a single lumped
parameter.

The seeded simulation approach relies on accurate esti-
mates of the critical nucleus size and the driving force ∆µ.
The nucleus size metric is integral to the data analyses and
to the interpretation of results, e.g., different nucleus sizes
ascribed to the same nucleus lead to different inferred inter-
facial free energies. The driving force is a potential source of
error for two reasons. First, small nuclei may have very dif-
ferent compositions14 and/or structures,15–17 etc. from their
bulk counterpart phases. The seeding approach cannot accu-
rately predict rates for nucleation processes that involve such
non-classical nuclei.18 Second, even when nuclei do have the
structure and composition of the stable phase, nucleation rates
are highly sensitive to the driving force.19 Precise estimates of
driving forces for solute precipitation pose major challenges
in simulations.20

Despite these limitations, Sanz et al. demonstrated that
seeding results are surprisingly accurate for crystal nucleation
in supercooled liquids of hard-spheres, water, NaCl, and a
Lennard-Jones fluid.6,7 The findings by Sanz et al. motivated
Zimmermann et al. to examine the quantitative predictions
of seeded simulation rates for solute precipitate nucleation.
Zimmermann et al. computed NaCl nucleation rates from
supersaturated brine.11 Salt nucleation from electrolyte solu-
tions is important in geochemistry,21 and it presents unique
fundamental questions about electroneutrality of nuclei,

0021-9606/2018/148(22)/222838/9 148, 222838-1 © Author(s) 2018

https://doi.org/10.1063/1.5024009
https://doi.org/10.1063/1.5024009
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5024009
mailto:nerz@lbl.gov
mailto:nerz@lbl.gov
mailto:d.quigley@warwick.ac.uk
mailto:bilsmith@uoguelph.ca
mailto:baronp@engineering.ucsb.edu
mailto:baronp@engineering.ucsb.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5024009&domain=pdf&date_stamp=2018-05-30


222838-2 Zimmermann et al. J. Chem. Phys. 148, 222838 (2018)

non-ideal activities, and desolvation barriers during ion attach-
ment. Aqueous NaCl was specifically chosen because it is
a simple 1-1 electrolyte, because there are extensively char-
acterized force fields,20 and because experimental homoge-
neous nucleation rates have been reported.22–24 For simula-
tions, homogeneous nucleation is an advantageous starting
point for several reasons. Homogeneous nucleation is a well-
defined rate process, whereas heterogeneous nucleation can
occur at many types of sites with unknown characteristics and
populations. Additionally, properties like attachment frequen-
cies, interfacial free energies, and driving forces that govern
homogeneous nucleation rates also influence heterogeneous
nucleation rates.

To compare predicted and measured solute precipitate
nucleation rates, Zimmerman et al. compared theoretical and
experimental rates at the same driving forces, i.e., compar-
isons of Jexpt(∆µ) vs. Jsim(∆µ), where (∆µ)expt = (∆µ)sim =∆µ.
These comparisons require precise knowledge of the driving
force vs. composition for the experimental system and for the
model system.8 The classical theory suggests that comparisons
performed in this way will largely remove the effects of force
field imperfections. Based on the classical theory, all residual
differences in the Jexpt(∆µ) vs. Jsim(∆µ) comparison stem from
errors in the interfacial free energy, from errors in the attach-
ment/detachment kinetics (prefactors), and from non-classical
mechanisms. For rates computed with seeding, we show in
this work that additional errors may also arise from the chosen
nucleus size metric.

Zimmermann et al. chose NaCl concentrations in their
seeded simulations to approximately match the driving forces
in the available experiments. Unfortunately, the nucleation
rates predicted by Zimmermann et al. were 15 to 30 orders
of magnitude larger than the experimental rates.11 Because
the computed homogeneous rates were faster than the exper-
iments, the discrepancy could not be ascribed to experi-
ments that inadvertently probed heterogeneous nucleation.
Zimmermann et al. speculated that the Joung-Cheatham force
field with SPC/E water (JC/SPC/E) was not able to describe
interfacial properties of the nuclei and even questioned the
assumptions used to extract rates from the experimental
measurements.11

Imperfect force fields and experimental interpretations
are potentially important, but more importantly the electrolyte
chemical potentials for the JC/SPC/E force field differ from
those which Zimmermann et al. used to define the driving
force. Joung and Cheatham estimated the solubility limit for
their model as 7.2m,25 where m refers to molality in (mol
NaCl/kg of water). Aragones et al. estimated the solubility as
4.8m by directly computing the chemical potentials of the solid
and the electrolyte solution.26 They recommended the similar
and independently obtained value of 5.1m based on long time
scale coexistence simulations. Recent studies starting with
Moucka et al.27–30 and followed by Mester and Panagiotopou-
los,31,32 Kolafa,33 Benavides et al.,34 and Espinosa et al.35

have all arrived at estimates near 3.7m.
This work reviews the seeded simulation approach and

revises our predicted NaCl nucleation rates to account for
the revised driving force estimates. We illustrate an analysis
of variance (ANOVA) procedure36 to quantify how errors in

the driving force and in the seeded simulation data influence
the predicted rates. We also examine the effects of different
nucleus size metrics in the seeding analysis.

II. BRIEF REVIEW OF SEEDING APPROACHES

The seeded simulation approach relies on some, but not
all, aspects of CNT:

1. The seeding approach assumes that the reaction coordi-
nate is nucleus size, an assumption that is justified by
several recent analyses.37–39

2. The seeding approach assumes that the free energy (in
units of kBT ) to form a nucleus is

βF(n) = −nβ∆µ + (βφγ)effn
2/3, (1)

where (βφγ)eff is an effective dimensionless parameter
that lumps together the shape factor φ, the interfacial free
energy γ, and β = 1/ (kBT ). The lumped parameter is
not required to match the value for nuclei with spherical
shapes and/or macroscopic interfacial properties.40

3. The commonly used CNT rate expression is

J = ρZD+Γ exp
[
−B/(β∆µ)2

]
, (2)

where ρ is the density of monomers, Z is the Zeldovich
factor,41 where D+ is the attachment frequency, Γ is the
Girshick-Chiu correction42 {i.e., Γ = exp[F(1)/ (kBT )]},
and the B parameter is13

B =
[
2(βφγ)eff/3

]3/2. (3)

Equations (2) and (3) emerge from the Frenkel-Zeldovich
equation13 or equivalently from an overdamped Lange-
vin model in which the diffusivity along the (continuous)
nucleus size coordinate is the attachment frequency.43 By
analogy, the seeding approach assumes that short trajec-
tory swarms are realizations of an overdamped Langevin
equation. After integrating away the noise, one obtains
an equation that describes how the average nucleus size
in a swarm of trajectories should evolve from some initial
size n0,8

d〈n〉
dt

�����n0

=

{
−D+ β∆µ +

2
3

D+(βφγ)effn
−1/3

}�����n0

. (4)

The quantity in brackets is proportional to ∂F/∂n as pre-
dicted by CNT. The expression should only be used at
short times. If nuclei evolve for too long, the forces that
influence their growth/dissolution will change.44

A seeding calculation begins with the creation of care-
fully solvated and annealed seeds ranging from very small
pre-critical sizes to very large post-critical sizes. See the work
of Zimmermann et al. for details on seed preparation.11 For
each group of initial seed sizes, many independent configu-
rations are initiated and allowed to run for a short time. The
seeded trajectories are used to estimate d〈n〉/dt for each initial
nucleus size. Given β∆µ, the seeded simulation data enable
an estimate of all remaining properties that are needed to com-
pute the rate. For example, Zimmermann et al. obtained D+ and
(βφγ)eff by fitting their data to Eq. (4) and then computed the
nucleation rate according to Eq. (2).11 Zimmermann et al. used
five seeds per initial size and a seeded trajectory duration of
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4 ns.11 4 ns is sufficiently short to avoid any appreciable deple-
tion of the overall saturation level in the simulation box. The
data presented by Zimmermann et al. suggest that 4 ns is also
sufficiently long to identify an initial slope as d〈n〉/dt. Seed-
ing enables a straightforward uncertainty analysis (see below),
but the most appropriate seed duration time for extracting an
attachment frequency is not clear.

Consider, for example, swarm evolution from a post-
critical seed. Because of the annealing procedure, the ini-
tial concentration around the seed should begin at the bulk
supersaturation. During the first moments of swarm evolu-
tion, i.e., immediately after release of constraints, the surface
concentration should drop rapidly to that given by the Ostwald-
Freundlich equation.45 As time progresses, the post-critical
nucleus and the depleted boundary layer thickness around
the nucleus should both grow. Estimates of the attachment
frequency at both short and long times are complicated by
the moving phase boundary and the changing depletion layer
thickness.

Seeding approaches enable a prediction of trends, while
methods like forward flux sampling46 and direct simulation
estimates of mean first passage times47 provide the rate only
at the simulated supersaturation. In particular, by predicting the
barrier parameter B, seeded simulation results from one β∆µ-
value can be used to predict nucleation rates at other supersat-
urations.48 But before a seeding calculation can be completed,
we also require an accurate model for ∆µ. Section III reviews
the challenges and recent evolution of chemical potential driv-
ing force estimates for nucleation in a supersaturated NaCl
solution.

III. DRIVING FORCES

The seeded simulations of Zimmermann et al. examined
NaCl concentrations from 8m to 12m, but directly computed
electrolyte chemical potentials were only available up to 6m.
An accurate model of the driving force in the metastable zone
is critical for most versions of the seeded simulation approach
(see the work of Lifanov et al. for the exception).18 As noted in
the Introduction, the driving force and solubility involve diffi-
cult calculations, and a consensus for the JC/SPC/E model has
only recently emerged. Moucka et al.27,29,30 obtained the first
accurate solubility estimates at 298.15 K and 1 bar pressure
using their osmotic ensemble Monte Carlo method, report-
ing a value of 3.64 ± 0.20 m for the JC/SPC/E force field.
Mester and Panagiotopoulos subsequently used MD particle
insertion and thermodynamic integration techniques to esti-
mate the solubility as 3.59 ± 0.04 m or 3.71 ± 0.04 m31,32

(the second estimate incorporates an improved treatment of
the infinite dilution limit). Benavides et al. then obtained a
value of 3.71 ± 0.20 m using a “global” MD thermodynamic
integration calculation.34,49 Finally, Kolafa33 and Espinosa
et al.35 separately implemented a correct version of the
direct MD coexistence method to estimate the solubility as
3.6 ± 0.4 m and 3.7 ± 0.4 m, respectively.

Most of the above solubility estimates required the elec-
trolyte chemical potential µNaCl(m) at a discrete series of
molalities up to a supersaturated value of 6m. The computed
values of µNaCl(m) are used to parameterize analytic models

for the chemical potential. According to convention, the ref-
erence chemical potential µ†NaCl is obtained by extrapolating
Henry’s law to a hypothetically ideal 1.0m NaCl solution.50

Deviations from the ideal Henry’s law behavior are captured
in the activity coefficient γ±:

µNaCl = µ
†

NaCl + 2kBT ln m + 2kBT ln γ±, (5)

where γ± is the overall NaCl electrolyte activity coeffi-
cient and µ†NaCl for the JC/SPC/E model is approximately
−391.6 kJ/mol.31 Different investigators have used different
models for the ln γ± part of µNaCl(m). Several of the pro-
posed models accurately fit the computed µNaCl(m) values,
but in our study µNaCl(m) must be extrapolated beyond 6m
for comparisons to experimental nucleation rates. The func-
tional form of ln γ± that is used to extrapolate µNaCl(m) into
the metastable supersaturation zone influences the estimated
driving force in this concentration range. A satisfactory model
of ln γ± for extrapolation deep into the metastable zone must
account for the finite size of ions and the concentration depen-
dence of the dielectric constant.51 We have used an extension
of the Debye-Hückel limiting law52 similar to the expres-
sion of Hamer and Wu53 used to fit experimental data, but
restricted to a linear term appended to the Debye-Hückel
term,

log10γ± = −
a
√

m

1 + b
√

m
+ cm. (6)

We used the theoretical expression for a depending on the H2O
dielectric constant and density,52 yielding a = 0.568 and fitted
b and c to the combined simulation data of Moucka et al.27

and of Mester and Panagiotopoulus31 along with new high-m
data points from this work using the same methodology as
in Ref. 34. The fit yields values b = 1.177 69 m−1/2 and
c = 0.177 157 m−1. Figure 1 shows the computed solid NaCl
chemical potential as well as the computed and extrapolated
electrolyte chemical potentials.

The revised calculations of µNaCl(m) leave almost no
uncertainty in the solubility, but there remains considerable
uncertainty in the driving force for molalities deep in the
metastable zone. Specifically, we determined that the uncer-
tainties increased with increasing molality: 0.111, 0.125,
0.168, 0.226, and 0.363 kJ/mol for m = 3.7, 8, 10, 12, and
16, respectively. These uncertainties are calculated (i) by con-
structing a new data set by perturbing each data point around its
initial position according to a normal distribution with width
0.2 kJ/mol (the reported simulation uncertainty31) and (ii) then
refitting the new data set to Eq. (6); this procedure is repeated
1000 times to yield average chemical potentials and standard
deviations at varying molalities.

The driving force basis should be consistent with the def-
inition of nucleus size. In our case, nucleus size is counted
in ions, not in formula units of NaCl. The driving force for
nucleation on a per-ion basis is

∆µ ≡ 0.5 ∆µNaCl = 0.5(µNaCl(m) − µsolid), (7)

i.e., the difference between the electrolyte chemical poten-
tial in solution and the solid NaCl chemical potential,
µsolid = µNaCl(msat), at the same temperature and pressure.
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FIG. 1. Electrolyte chemical potential of sodium chloride, µNaCl, as a func-
tion of molality, m; T = 298 K and p = 1 bar. Blue squares and blue triangles
show the electrolyte chemical potential as computed by Moucka et al.27 and
Mester and Panagiotopoulos,31 whereas purple pentagons are new data from
this work. The black curve extrapolates the data points using Eqs. (5) and (6)
to m = 16, and the gray curves give the uncertainty as 1 standard deviation. The
gold circles show the early results of Aragones et al.26 which were used by
Zimmermann et al.11 Dashed horizontal lines show the solid NaCl chemical
potential. The estimated solubility limits are also shown as vertical lines.

IV. RATES AND UNCERTAINTIES FROM SEEDING

Equation (4) suggests that one can directly regress the
seeded simulation data (n−1/3 and d〈n〉/dt) to infer D+ and
(βφγ)eff from the slope and intercept of the best fit line. The
resulting estimates of D+ and (βφγ)eff can be used to esti-
mate the rate via Eqs. (2) and (3). D+ and (βφγ)eff are both
random variables (estimates from linear regression), and their
uncertainties propagate into the rate calculation. The slope and
intercept estimates in linear regression [and therefore D+ and
(βφγ)eff] are correlated to one another.36 The complicated
dependence of the rate on D+ and (βφγ)eff, as well as their
interdependence, complicates efforts to quantify uncertainty
in the rate estimate.

To facilitate the rate calculation and error analysis, note
that the free energy barrier within the exponential part of rate
expression (2) can be written as4

B/(β∆µ)2 =
1
2

n� β∆µ. (8)

Equation (8) is an identity that emerges from classical nucle-
ation theory.12,13 To exploit Eq. (8), we can estimate n‡ and
D+ directly from the seeded simulation data, with β∆µ being
separately computed using methods listed in Sec. III. To esti-
mate n‡, rearrange Eq. (4) to give n−1/3 as a function of dn/dt
rather than dn/dt as a function of n−1/3. The rearrangement still
allows identification of D+ and (βφγ)eff from the slope and
intercept so that the prefactor and B-parameter can be deter-
mined. However, the regression line also provides an estimate
of n‡ (where dn/dt = 0) and its uncertainty for the rate calcu-
lation [see Fig. 2(b)]. An alternative seeding procedure9 uses
an algorithm somewhat like bisection to identify the size at
which dn/dt = 0.

FIG. 2. (a) Seeded simulation results for an aqueous solution of NaCl with
molality 8m. The initial nucleus sizes are 11, 23, 35, 44, 105, and 176 ions.
(b) Linear regression results. Each data point corresponds to five trajectories
initiated from carefully solvated nuclei of a specific initial size. The dashed
curves show a 90% confidence interval on the regression model.

Figure 2(a) shows seeded simulation data from the work
of Zimmermann et al.11 on rocksalt NaCl nucleation from
an aqueous solution of sodium chloride at a molality of 8m.
Figure 2(b) plots these data as n−1/3 vs. d〈n〉/dt. This proce-
dure assumes an n-independent attachment frequency, but the
attachment frequency should actually depend on nucleus size.1

Zimmermann et al.11 showed that ion-attachment to NaCl
nuclei is desolvation limited, so D+ should be proportional to
n2/3. More elaborate regression procedures could account for
n-dependence in D+, but the effects are expected to be small.
As the molality changes from m = 8, 10, to 12, the critical
nucleus size changes from 31, 14, to 6 ions. The corresponding
attachment frequencies 1.03/ns, 1.47/ns, and 1.47/ns, obtained
from 〈(δn)2〉 vs t,54 are nearly constant.

The separate estimate of β∆µ is needed to interpret the
linear regression results, to predict the nucleation rate, and
to place predictions and experimental measurements on the
ln J vs. 1/(β∆µ)2 plot as shown in Fig. 3. The original rate
predictions of Zimmermann et al.11 using µNaCl(m) and msat

from the work of Aragones et al. were between 1015 and 1030

orders of magnitude faster than the experimental rates. Figure 3
shows that most of the error is reconciled by calculations based
on the revised chemical potential driving forces.

Unfortunately, the revised driving forces used in the simu-
lations no longer match those used in the experiments. It would
be useful to study nucleation at lower NaCl molalities in future
work. According to CNT, the critical nucleus size n‡ scales as
n‡ ∼ (β∆µ)−3. Based on directly computed critical sizes in 8m,
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FIG. 3. Homogeneous nucleation rate, J, of NaCl in water as a function of
the squared inverse driving force, 1/[∆µ/(kBT )]2. The red line gives predicted
rates from seeded simulation analysis using∆µ based on the msat andµNaCl(m)
calculations of Aragones et al.26 The predictions in blue are based on the
electrolyte chemical potential model of Eqs. (5) and (6) and the consensus
solubility: 3.7 mol/kg. The three solid blue circles are from separate analyses
of the seeding data at 8m, 10m, and 12m each giving separate D+ and (βφγ)eff
parameters. The solid blue line uses one molality-independent interfacial free
energy, a mean attachment frequency, and Eq. (2) to extrapolate the trends of
the nucleation rate. The open symbols (diamond, triangle, and square) are three
independent experimental estimates of the homogeneous nucleation rate.22–24

Nucleation rates from forward flux sampling simulations by Jiang et al.55 are
shown in gray.

10m, and 12m solutions, the critical nuclei at 6m would have
sizes near 200 ions (see the supplementary material). These
exceed our largest simulations, but it should be possible to
reach such sizes in future seeded simulations.

Two of the experimental rates shown in Fig. 3, from
the studies of Na et al.24 and Gao et al.,23 were measured
in droplets that were levitated and passed through an expo-
sure chamber, respectively. The levitation experiments were
designed to favor homogeneous nucleation by eliminating all
potential heterogeneous nucleation sites except for an air-water
interface. By contrast, Desarnaud et al. examined NaCl nucle-
ation within a high surface area mesoporous silica.22 Because
of the large disordered silica-water interface, heterogeneous
nucleation may explain the results of Desarnaud et al. which
are between 10 and 20 orders of magnitude faster than the
trend suggested by Gao et al.,23 Na et al.,24 and the revised
calculations.

The revised computational results suggest that seeded
simulations combined with accurate driving force calcula-
tions can be a powerful combination for predicting accurate
nucleation rates. However, the striking difference between the
previous rates of Zimmermann et al.11 and the revised predic-
tions of this study also illustrates the tremendous importance of
a precise ∆µ calculation for the molecular model. Apparently,
much of the original 1015-1030 error resulted from errors in
msat and µNaCl(m) that correspond to just fractional kBT errors
in the free energy calculations.20,34

Why do such small errors lead to giant errors in the nucle-
ation rate? Qualitatively, we can think of nucleation as a high
order association reaction, and it is well known that reactions
of high order are extremely sensitive to concentration. Quanti-
tatively, we can estimate the uncertainty in the predicted rates

by examining two key parts of the exponential term, n‡ and
β∆µ. Starting from the differential relationship

d(n−1/3) = −
1
3

n−4/3dn (9)

and then using typical error propagation rules to relate vari-
ances in estimates of n‡ and n‡−1/3,

σ2
n�−1/3 =

1
9

n�
−8/3σ2

n� . (10)

Inverting Eq. (10) gives σ2
n‡ = 9n‡8/3σ2

n‡−1/3 . The variance in

n‡−1/3 can be obtained from analysis of variance rules for the
linear regression, as shown in Fig. 2(b).36

To assess uncertainty in β∆µ, we begin from the per-ion
basis driving force

β∆µ = 0.5(βµNaCl(m) − βµNaCl(msat)). (11)

The uncertainty in the driving force in Eq. (7) is given by
standard uncertainty propagation rules as

σ2
β∆µ = (0.5)2

[
σ2
βµNaCl

(m) + σ2
βµNaCl

(msat)
]
. (12)

We use σβµNaCl (msat)= (0.2 kJ/mol)/RT from the work of
Nezbeda et al.20 and values of σµNaCl (m) as given in Sec. III.
We assume that the uncertainty in ln J is dominated by the term
n‡ β∆µ/2 in the exponential. Accordingly, the uncertainty in
ln[J/ρZD+Γ] can be estimated from σβ∆µ and σn‡ as

σln[J/ρD+ZΓ] =
1
2

n‡ β∆µ

√√√
σ2

n‡

n2
‡

+
σ2
β∆µ

(β∆µ)2
. (13)

Table I shows the estimates and uncertainties of the driving
force, the critical nucleus size, and ln[J/ρZD+Γ].

Based on the results in Table I, the error bars on the revised
computational estimates of ln J are approximately four natural
log units. In other words, the rate estimates (within assump-
tions of the seeding approach) are numerically accurate to
within a factor of ca. 40. Because the error contributions from
β∆µ have probably been overestimated, the dominant source
of numerical error in the revised calculations is most likely
from the estimate of n‡. Of course, tremendous computational
effort has been invested in precise driving force estimates for
the JC/SPC/E model of NaCl and water. For most other solutes
and solvents, the dominant source of error will likely be uncer-
tainty in the driving forces. Moreover, Sec. V shows that there
are additional sources of uncertainty related to assumptions in
the seeding approach.

TABLE I. Values and uncertainties of β∆µ, n‡, and ln[J/ρZD+Γ] from
regression of seeding data and error propagation analysis. The rows labeled
“due to σn‡” and “due to σβ∆µ” show that the uncertainty in σn‡ makes a
larger contribution than the uncertainty in σβ∆µ to the overall uncertainty in
ln J.

8 m 10 m 12 m

β∆µ 1.85 ± 0.05 2.59 ± 0.05 3.30 ± 0.06
n‡ 27 ± 3 15 ± 3 9 ± 2
B 87 ± 12 129 ± 25 158 ± 38
ln[J/ρZD+Γ] �25.3 ± 3.1 �19.3 ± 3.5 �14.5 ± 3.4
Due to σn‡ ± 3.0 ± 3.5 ± 3.4
Due to σβ∆µ ± 0.7 ± 0.4 ± 0.3
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V. INFLUENCE OF THE NUCLEUS SIZE METRIC

For single component nucleation processes, the free
energy (and equilibrium population) as a function of nucleus
size can be obtained from traditional rare event sampling meth-
ods.56,57 Suppose that the free energy calculation is performed
with two different nucleus size metrics, one that overesti-
mates nucleus size and one that underestimates nucleus size.
The two calculations will give two different free energy vs.
nucleus size relationships with one peaked at a large size and
one peaked at a small size. On the other hand, the two free
energy barriers will be similar, as long as one metric consis-
tently overestimates nucleus size while the other consistently
underestimates nucleus size. The reason is that the barrier
reflects the (small) population of critical clusters at equilib-
rium, regardless of the size ascribed to them in the clustering
algorithm.

Typical nucleus size metrics use a local order parameter
to identify atoms in a solute-rich and/or ordered local envi-
ronment. Then a clustering algorithm groups these atoms into
clusters and reports the cluster size. For the same nucleus,
using different local order parameters can yield different clus-
ter sizes. For example, consider a 3× 3× 3 nucleus of “solutes”
on a cubic lattice and suppose that all surrounding sites are
occupied by “solvents” as shown in Fig. 4. One could use
coordination numbers (CNs) to determine whether individ-
ual solute atoms are part of the nucleus. Let the coordination
number (CN) for a given solute be the number of solute near-
est neighbors. If our local order parameter requires CN ≥ 3,
then the clustering algorithm will identify a contiguous cluster
of size n = 27 solutes. If the local order parameter requires
CN ≥ 4, then corner sites on the nucleus are not counted
and clustering will give n = 19. If a stringent threshold of
CN ≥ 6 is used for the local order parameter, then only
n = 1 solute (at the center of the 3 × 3 × 3 cube) will be
counted.

This section shows that the seeding approach, in con-
trast to traditional rare events methods, gives results which
are highly sensitive to the nucleus size metric. This sensitivity
of the results to the nucleus size metric increases as the size of
inserted seed decreases, given that the ratio interface/volume
increases. In Fig. 5, the data from Zimmermann et al. have
been reanalyzed to obtain rate estimates with several differ-
ent nucleus size metrics. Zimmermann et al. used a stringent
local order parameter that requires an octahedral arrangement
of counterions around each ion (open blue circles). The rates

FIG. 4. For a 3 × 3 × 3 cluster of solutes on a cubic lattice, different coordi-
nation number (CN) thresholds for clustering lead to different nucleus sizes.
(Left) Using CN ≥ 3 includes solutes at corners, edges, faces, and interior
sites. (Middle) Using CN ≥ 4 includes solutes at edges, faces, and interior
sites. (Right) CN ≥ 5 includes solutes at faces and interior sites.

FIG. 5. Homogeneous nucleation rate, J, of NaCl in water as a function of the
squared inverse driving force, 1/[∆µ/(kBT )]2 obtained from different defini-
tions for the cluster size, n. CN refers to a coordination number and qoct is the
octahedral order parameter from the work of Zimmermann et al. One outlier
data point for the CN ≥ 6 criterion (8 m: 4 × 10−37/cm3/s) falls outside the
plotted range of rates (see the supplementary material for more information).
We also show rate estimates from forward flux sampling simulations by Jiang
et al.55 and from brute-force simulations at high molality.58

obtained by Zimmermann et al. are similar to rates obtained
from analysis with a stringent CN ≥ 6 requirement (blue dia-
monds). By systematically varying the CN-threshold, we can
see how the computed nucleation rates (from the seeding pro-
cedure) change. Different CN-thresholds from CN ≥ 1 to CN
≥ 6 yield rate estimates that span 30 orders of magnitude.
The rate estimate increases as the CN threshold becomes more
stringent.

Figure 5 also shows results from the simulations of Lanaro
and Patey. These authors directly observe nucleation in brute
force simulations of a 15m NaCl solution. Lanaro and Patey58

used the same JC/SPC/E force field to study nucleation in
direct large scale simulations at 15.6m, 22.2m, and beyond.
They did not report nucleation rates, but at 15.6m and 22.2m
they reported the duration of their simulations and the num-
ber of nuclei generated. We have used their data with the
approximation

J ≥

(
total number of

nucleation events

)
(

simulation
box volume

)
×

(
total duration
of simulations

) . (14)

Equation (14) gives an approximate lower bound on J because
multiple nucleation events occurred in the simulations by
Lanaro and Patey. Growth of the earliest nuclei consumes the
supersaturation and tends to suppress further nucleation. As
shown in Fig. 3, Eq. (14) applied to the data of Lanaro and Patey
yields J ≥ 6.5 × 1024/cm3 s at 15.7m and J ≥ 1.2 × 1025/cm3

s at 22.2m.
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We can understand the effects of different nucleus size
metrics from Eqs. (2) and (8). Given a value of the driv-
ing force, the estimated free energy barrier for nucleation is
directly proportional to the estimated critical nucleus size,

J = ρZD+Γ exp

⌊
−

1
2

n�∆µ

kBT

⌋
. (15)

Lax order parameters cause clustering algorithms to overesti-
mate the nucleus size, to overestimate the free energy barrier,
and therefore to underestimate the rate. Stringent order param-
eters cause clustering to underestimate the nucleus size, to
underestimate the barrier, and to overestimate the rate. The
dramatic effect of different nucleus size metrics is disconcert-
ing because there is no straightforward way to choose the most
suitable cluster-size definition.

Seeding analyses use a computational estimate of the crit-
ical nucleus size within the CNT rate expression; therefore,
the ideal nucleus size metric should be consistent with the
assumptions of CNT. Identifying an appropriate nucleus size
metric for seeding analysis is non-trivial7 because a true criti-
cal cluster is discrete, granular, and fluxional, while the CNT
model has sharp interfaces that separate continuous stable and
metastable phases. As yet, there are no generally established
principles to select an optimal CNT-consistent metric, but we
offer the following list of considerations:

(1) A stringent clustering threshold on the local order
parameter ensures that a cluster of size n contains at least
n atoms with bulk crystal-like structure, consistent with
the interpretation of the n∆µ term in the CNT free energy
expression. However, stringent local order parame-
ter thresholds omit surface atoms from the nucleus.
Because so many atoms in a small nucleus are part of the
surface, seeding calculations must decide whether sur-
face atoms are “on” or “in” the nucleus—a question that
is avoided by the sharp interface assumption in CNT.

(2) A lax local order parameter threshold, e.g., CN ≥ 1 or
CN≥ 2, will include adsorbates that are clearly “on” (not
“within”) the surfaces of nuclei. These adsorbates may
be dynamically committed to the nucleus and still exte-
rior to a CNT-consistent dividing surface. Extremely
lax order parameter thresholds (CN ≥ 1) with highly
concentrated solutes also risk crossing the percolation
limit in clustering, which may lead to extremely large
nuclei.

(3) CNT can be formulated in numerous ways, but for
droplet nucleation an equimolar dividing surface leads
to a convenient formulation with no surface excess
atoms.13 An equimolar dividing surface is difficult to
define for solid-fluid interfaces because the density pro-
file is a series of sharp peaks rather than a smooth
sigmoid curve.59 Nevertheless, the analogy to droplet
nucleation theories suggests that the nucleus should
include atoms whose CN is approximately halfway
between the large CN for atoms in the bulk solid and
the small CN for atoms in the metastable solution.

Theories of crystal growth at low supersaturation focus on the
half-lattice positions, i.e., “kink sites,” on surfaces. Adding
one atom to a kink site adds one atom to the bulk crys-
tal lattice by translational symmetry arguments. For a cubic

“Kossel” crystal, the kink sites have CNs that are half of
the bulk coordination number.60,61 For a large crystal, these
considerations suggest including kink sites and more strongly
coordinated atoms in the nucleus size n and excluding atoms
with lower CNs. In the case of a cubic lattice, the half-
lattice CN prescription suggests that CN ≥ 3 is an optimal
clustering criterion. Interestingly, the forward flux sampling
results55 (which should be independent of the clustering cri-
terion) agree most closely with the CN ≥ 3 and CN ≥ 4
results.

We emphasize that our work can provide only tenta-
tive recommendations, as many potentially important factors
have not been considered. Complex crystal structures may
present many types of kink sites and many different build-
ing units. Moreover, the facets of nuclei are not infinitely
large, so any rules inspired by large facets may require
amendments to account for corners and edges. Indeed, the
use of an equimolar dividing surface for droplet nucleation
leads to a size-dependent surface tension because of the Tol-
man correction.62,63 Beyond questions about dividing sur-
faces and nucleus size metrics, the procedure for solvating
and annealing seeds at non-equilibrium sizes may influence
their stability and dynamics. The many sources of uncer-
tainty in our results, some not easily resolved, point to the
need for more robust rare event methods that can circum-
vent the special difficulties in simulating solute precipitate
nucleation.

VI. CONCLUSIONS

This work examines the sources of error in seeded simu-
lation results for NaCl nucleation from aqueous solution. Our
results demonstrate that the seeding approach relies critically
on a precise driving force for the model system. For accu-
rate rate estimates, the driving force vs. solute concentration
curve, i.e., ∆µ(m), need not exactly reproduce that of the real
system, but it should accurately describe the thermodynamic
properties of the model system. We have demonstrated these
calculations and presented uncertainty analyses for the rates
of NaCl nucleation from a supersaturated NaCl electrolyte
solution.

We have further demonstrated that the nucleus size metric
also has a strong influence on the predicted nucleation rates.
Because the seeding approach uses the critical nucleus size
in a CNT-like rate expression, the ideal nucleus size metric
should be consistent with the equimolar dividing surface def-
inition used in classical nucleation theory. Size metrics that
overestimate nucleus sizes lead to underestimated nucleation
rates, and size metrics that underestimate nucleus sizes lead
to overestimated rates. Further work is needed to determine
the optimal local order parameters and clustering rules for
computing nucleus size, but our results point to some ten-
tative suggestions. A comparison between our results and
independent forward flux sampling results55 suggests that the
optimal nucleus size metric should include all atoms in the
bulk, surface, edge, and perhaps corner sites. Solute atoms with
lower coordination to other solute atoms should be viewed as
adsorbates and excluded from the nucleus size estimate. The
numerous and potentially gigantic sources of error in rates
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obtained by the seeding approach should motivate the devel-
opment of more robust rare event methods to overcome the
unique challenges encountered in studies of solute precipitate
nucleation.

SUPPLEMENTARY MATERIAL

See supplementary material for how rates were esti-
mated from brute force simulations. It also shows how a
single outlier data point in the reprocessed 8m trajecto-
ries leads to an extremely small rate estimate. Data asso-
ciated with this manuscript is available for download at
http://wrap.warwick.ac.uk/101981.
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