Artículos


2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006

2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997

1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988


  1. A general purpose model for the condensed phases of water: TIP4P/2005
    J.L.F.Abascal and C.Vega
    Journal of Chemical Physics 123 234505 , (2005)
  2. Can simple models describe the phase diagram of water ?
    C.Vega, J.L.F.Abascal, E.Sanz, L.G.MacDowell and C.McBride
    Journal of Physics Condensed Matter 17 S3283-S3288 (2005)
  3. Relation between the melting temperature and the temperature of maximum density for the most common models of water
    C.Vega and J.L.F.Abascal
    Journal of Chemical Physics 123 144504 (2005)
  4. Non-Markovian melting: a novel procedure to generate initial liquid like phases for small molecules for use in computer simulation studies
    C.McBride, C.Vega and E.Sanz
    Computer Physics Communications 170 137-143 (2005)
  5. A potential model for the study of ices and amorphous water: TIP4P/Ice
    J.L.F.Abascal, E.Sanz, R.Garcia and C.Vega
    Journal of Chemical Physics 122 234511 (2005)
  6. Radial distrubution functions and densities for SPC/E, TIP4P and TIP5P models for liquid water and ices Ih,Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII
    C.Vega, C.McBride, E.Sanz and J.L.F.Abascal
    Physical Chemistry Chemical Physics 7 1450-1456 (2005)
  7. The melting point of the most popular models of water
    C.Vega, E.Sanz and J.L.F.Abascal
    Journal of Chemical Physics 122 114507 (2005)
  8. The range of meta stability of ice-water melting for two simple models of water
    C.McBride, C.Vega, E.Sanz, C.Vega, J.L.F.Abascal and L.G.MacDowell
    Molecular Physics 103 1-5 (2005)