Artículos
2023
|
2022
|
2021
|
2020
|
2019
|
2018
|
2017
|
2016
|
2015
2014
|
2013
|
2012
|
2011
|
2010
|
2009
|
2008
|
2007
|
2006
2005
|
2004
|
2003
|
2002
|
2001
|
2000
|
1999
|
1998
|
1997
1996
|
1995
|
1994
|
1993
|
1992
|
1991
|
1990
|
1989
|
1988
The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F−, Br−, I−, Rb+, and Cs+
PDF
S.Blazquez, M.M.Conde,J.L.F.Abascal and C.Vega
Journal of Chemical Physics
156
044505 (2022)
Supplementary Material
Gromacs topol file for Madrid force field
A New Force Field for OH− for Computing Thermodynamic and Transport Properties of H2 and O2 in Aqueous NaOH and KOH Solutions
PDF
P.Habibi, A.Rahbari,S.Blazquez, C.Vega, P.Dey, T.J.H.Vlugt and O. Moultos
J.Phys.Chem.B
126
9376 (2022)
Supplementary Material
Melting points of water models: Current situation
PDF
S.Blazquez and C.Vega
J.Chem.Phys.
156
216101 (2022)
Supplementary Material
Solubility of Methane in Water: Some Useful Results for Hydrate Nucleation
PDF
Joanna Grabowska,S.Blazquez,E.Sanz,I.M.Zeron,J.Algaba,J.M.Miguez,F.J.Blas and C.Vega
J.Phys.Chem.B
126
8553 (2022)
Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations
PDF
I.Sanchez-Brugos, A.R.Tejedor,C.Vega,M.M.Conde,E.Sanz,J.Ramirez and J.R.Espinosa
J.Chem.Phys.
157
094503 (2022)
Maximum in density of electrolyte solutions: Learning about ion–water interactions and testing the Madrid-2019 force field
PDF
L.F.Sedano, S.Blazquez, E.G.Noya,C.Vega and J.Troncoso
Journal of Chemical Physics
156
154502 (2022)
Experimental densities
Simulation densities
Freezing point depression of salt aqueous solutions using the Madrid-2019 model
PDF
C.P.Lamas, C. Vega and E.G.Noya
J.Chem.Phys.
156
134503 (2022)
On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system
PDF
P. Montero de Hijes and C.Vega
Journal of Chemical Physics
156
014505 (2022)
Supplementary Material